You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpstf2.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. *> \brief \b CPSTF2 computes the Cholesky factorization with complete pivoting of complex Hermitian positive semidefinite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CPSTF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpstf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpstf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpstf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * REAL TOL
  25. * INTEGER INFO, LDA, N, RANK
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * )
  30. * REAL WORK( 2*N )
  31. * INTEGER PIV( N )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CPSTF2 computes the Cholesky factorization with complete
  41. *> pivoting of a complex Hermitian positive semidefinite matrix A.
  42. *>
  43. *> The factorization has the form
  44. *> P**T * A * P = U**H * U , if UPLO = 'U',
  45. *> P**T * A * P = L * L**H, if UPLO = 'L',
  46. *> where U is an upper triangular matrix and L is lower triangular, and
  47. *> P is stored as vector PIV.
  48. *>
  49. *> This algorithm does not attempt to check that A is positive
  50. *> semidefinite. This version of the algorithm calls level 2 BLAS.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] UPLO
  57. *> \verbatim
  58. *> UPLO is CHARACTER*1
  59. *> Specifies whether the upper or lower triangular part of the
  60. *> symmetric matrix A is stored.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The order of the matrix A. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in,out] A
  72. *> \verbatim
  73. *> A is COMPLEX array, dimension (LDA,N)
  74. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  75. *> n by n upper triangular part of A contains the upper
  76. *> triangular part of the matrix A, and the strictly lower
  77. *> triangular part of A is not referenced. If UPLO = 'L', the
  78. *> leading n by n lower triangular part of A contains the lower
  79. *> triangular part of the matrix A, and the strictly upper
  80. *> triangular part of A is not referenced.
  81. *>
  82. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  83. *> factorization as above.
  84. *> \endverbatim
  85. *>
  86. *> \param[out] PIV
  87. *> \verbatim
  88. *> PIV is INTEGER array, dimension (N)
  89. *> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
  90. *> \endverbatim
  91. *>
  92. *> \param[out] RANK
  93. *> \verbatim
  94. *> RANK is INTEGER
  95. *> The rank of A given by the number of steps the algorithm
  96. *> completed.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] TOL
  100. *> \verbatim
  101. *> TOL is REAL
  102. *> User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
  103. *> will be used. The algorithm terminates at the (K-1)st step
  104. *> if the pivot <= TOL.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDA
  108. *> \verbatim
  109. *> LDA is INTEGER
  110. *> The leading dimension of the array A. LDA >= max(1,N).
  111. *> \endverbatim
  112. *>
  113. *> \param[out] WORK
  114. *> \verbatim
  115. *> WORK is REAL array, dimension (2*N)
  116. *> Work space.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] INFO
  120. *> \verbatim
  121. *> INFO is INTEGER
  122. *> < 0: If INFO = -K, the K-th argument had an illegal value,
  123. *> = 0: algorithm completed successfully, and
  124. *> > 0: the matrix A is either rank deficient with computed rank
  125. *> as returned in RANK, or is not positive semidefinite. See
  126. *> Section 7 of LAPACK Working Note #161 for further
  127. *> information.
  128. *> \endverbatim
  129. *
  130. * Authors:
  131. * ========
  132. *
  133. *> \author Univ. of Tennessee
  134. *> \author Univ. of California Berkeley
  135. *> \author Univ. of Colorado Denver
  136. *> \author NAG Ltd.
  137. *
  138. *> \date December 2016
  139. *
  140. *> \ingroup complexOTHERcomputational
  141. *
  142. * =====================================================================
  143. SUBROUTINE CPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  144. *
  145. * -- LAPACK computational routine (version 3.7.0) --
  146. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  147. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148. * December 2016
  149. *
  150. * .. Scalar Arguments ..
  151. REAL TOL
  152. INTEGER INFO, LDA, N, RANK
  153. CHARACTER UPLO
  154. * ..
  155. * .. Array Arguments ..
  156. COMPLEX A( LDA, * )
  157. REAL WORK( 2*N )
  158. INTEGER PIV( N )
  159. * ..
  160. *
  161. * =====================================================================
  162. *
  163. * .. Parameters ..
  164. REAL ONE, ZERO
  165. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  166. COMPLEX CONE
  167. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  168. * ..
  169. * .. Local Scalars ..
  170. COMPLEX CTEMP
  171. REAL AJJ, SSTOP, STEMP
  172. INTEGER I, ITEMP, J, PVT
  173. LOGICAL UPPER
  174. * ..
  175. * .. External Functions ..
  176. REAL SLAMCH
  177. LOGICAL LSAME, SISNAN
  178. EXTERNAL SLAMCH, LSAME, SISNAN
  179. * ..
  180. * .. External Subroutines ..
  181. EXTERNAL CGEMV, CLACGV, CSSCAL, CSWAP, XERBLA
  182. * ..
  183. * .. Intrinsic Functions ..
  184. INTRINSIC CONJG, MAX, REAL, SQRT
  185. * ..
  186. * .. Executable Statements ..
  187. *
  188. * Test the input parameters
  189. *
  190. INFO = 0
  191. UPPER = LSAME( UPLO, 'U' )
  192. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  193. INFO = -1
  194. ELSE IF( N.LT.0 ) THEN
  195. INFO = -2
  196. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  197. INFO = -4
  198. END IF
  199. IF( INFO.NE.0 ) THEN
  200. CALL XERBLA( 'CPSTF2', -INFO )
  201. RETURN
  202. END IF
  203. *
  204. * Quick return if possible
  205. *
  206. IF( N.EQ.0 )
  207. $ RETURN
  208. *
  209. * Initialize PIV
  210. *
  211. DO 100 I = 1, N
  212. PIV( I ) = I
  213. 100 CONTINUE
  214. *
  215. * Compute stopping value
  216. *
  217. DO 110 I = 1, N
  218. WORK( I ) = REAL( A( I, I ) )
  219. 110 CONTINUE
  220. PVT = MAXLOC( WORK( 1:N ), 1 )
  221. AJJ = REAL ( A( PVT, PVT ) )
  222. IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
  223. RANK = 0
  224. INFO = 1
  225. GO TO 200
  226. END IF
  227. *
  228. * Compute stopping value if not supplied
  229. *
  230. IF( TOL.LT.ZERO ) THEN
  231. SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ
  232. ELSE
  233. SSTOP = TOL
  234. END IF
  235. *
  236. * Set first half of WORK to zero, holds dot products
  237. *
  238. DO 120 I = 1, N
  239. WORK( I ) = 0
  240. 120 CONTINUE
  241. *
  242. IF( UPPER ) THEN
  243. *
  244. * Compute the Cholesky factorization P**T * A * P = U**H * U
  245. *
  246. DO 150 J = 1, N
  247. *
  248. * Find pivot, test for exit, else swap rows and columns
  249. * Update dot products, compute possible pivots which are
  250. * stored in the second half of WORK
  251. *
  252. DO 130 I = J, N
  253. *
  254. IF( J.GT.1 ) THEN
  255. WORK( I ) = WORK( I ) +
  256. $ REAL( CONJG( A( J-1, I ) )*
  257. $ A( J-1, I ) )
  258. END IF
  259. WORK( N+I ) = REAL( A( I, I ) ) - WORK( I )
  260. *
  261. 130 CONTINUE
  262. *
  263. IF( J.GT.1 ) THEN
  264. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  265. PVT = ITEMP + J - 1
  266. AJJ = WORK( N+PVT )
  267. IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
  268. A( J, J ) = AJJ
  269. GO TO 190
  270. END IF
  271. END IF
  272. *
  273. IF( J.NE.PVT ) THEN
  274. *
  275. * Pivot OK, so can now swap pivot rows and columns
  276. *
  277. A( PVT, PVT ) = A( J, J )
  278. CALL CSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  279. IF( PVT.LT.N )
  280. $ CALL CSWAP( N-PVT, A( J, PVT+1 ), LDA,
  281. $ A( PVT, PVT+1 ), LDA )
  282. DO 140 I = J + 1, PVT - 1
  283. CTEMP = CONJG( A( J, I ) )
  284. A( J, I ) = CONJG( A( I, PVT ) )
  285. A( I, PVT ) = CTEMP
  286. 140 CONTINUE
  287. A( J, PVT ) = CONJG( A( J, PVT ) )
  288. *
  289. * Swap dot products and PIV
  290. *
  291. STEMP = WORK( J )
  292. WORK( J ) = WORK( PVT )
  293. WORK( PVT ) = STEMP
  294. ITEMP = PIV( PVT )
  295. PIV( PVT ) = PIV( J )
  296. PIV( J ) = ITEMP
  297. END IF
  298. *
  299. AJJ = SQRT( AJJ )
  300. A( J, J ) = AJJ
  301. *
  302. * Compute elements J+1:N of row J
  303. *
  304. IF( J.LT.N ) THEN
  305. CALL CLACGV( J-1, A( 1, J ), 1 )
  306. CALL CGEMV( 'Trans', J-1, N-J, -CONE, A( 1, J+1 ), LDA,
  307. $ A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
  308. CALL CLACGV( J-1, A( 1, J ), 1 )
  309. CALL CSSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  310. END IF
  311. *
  312. 150 CONTINUE
  313. *
  314. ELSE
  315. *
  316. * Compute the Cholesky factorization P**T * A * P = L * L**H
  317. *
  318. DO 180 J = 1, N
  319. *
  320. * Find pivot, test for exit, else swap rows and columns
  321. * Update dot products, compute possible pivots which are
  322. * stored in the second half of WORK
  323. *
  324. DO 160 I = J, N
  325. *
  326. IF( J.GT.1 ) THEN
  327. WORK( I ) = WORK( I ) +
  328. $ REAL( CONJG( A( I, J-1 ) )*
  329. $ A( I, J-1 ) )
  330. END IF
  331. WORK( N+I ) = REAL( A( I, I ) ) - WORK( I )
  332. *
  333. 160 CONTINUE
  334. *
  335. IF( J.GT.1 ) THEN
  336. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  337. PVT = ITEMP + J - 1
  338. AJJ = WORK( N+PVT )
  339. IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
  340. A( J, J ) = AJJ
  341. GO TO 190
  342. END IF
  343. END IF
  344. *
  345. IF( J.NE.PVT ) THEN
  346. *
  347. * Pivot OK, so can now swap pivot rows and columns
  348. *
  349. A( PVT, PVT ) = A( J, J )
  350. CALL CSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  351. IF( PVT.LT.N )
  352. $ CALL CSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
  353. $ 1 )
  354. DO 170 I = J + 1, PVT - 1
  355. CTEMP = CONJG( A( I, J ) )
  356. A( I, J ) = CONJG( A( PVT, I ) )
  357. A( PVT, I ) = CTEMP
  358. 170 CONTINUE
  359. A( PVT, J ) = CONJG( A( PVT, J ) )
  360. *
  361. * Swap dot products and PIV
  362. *
  363. STEMP = WORK( J )
  364. WORK( J ) = WORK( PVT )
  365. WORK( PVT ) = STEMP
  366. ITEMP = PIV( PVT )
  367. PIV( PVT ) = PIV( J )
  368. PIV( J ) = ITEMP
  369. END IF
  370. *
  371. AJJ = SQRT( AJJ )
  372. A( J, J ) = AJJ
  373. *
  374. * Compute elements J+1:N of column J
  375. *
  376. IF( J.LT.N ) THEN
  377. CALL CLACGV( J-1, A( J, 1 ), LDA )
  378. CALL CGEMV( 'No Trans', N-J, J-1, -CONE, A( J+1, 1 ),
  379. $ LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
  380. CALL CLACGV( J-1, A( J, 1 ), LDA )
  381. CALL CSSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  382. END IF
  383. *
  384. 180 CONTINUE
  385. *
  386. END IF
  387. *
  388. * Ran to completion, A has full rank
  389. *
  390. RANK = N
  391. *
  392. GO TO 200
  393. 190 CONTINUE
  394. *
  395. * Rank is number of steps completed. Set INFO = 1 to signal
  396. * that the factorization cannot be used to solve a system.
  397. *
  398. RANK = J - 1
  399. INFO = 1
  400. *
  401. 200 CONTINUE
  402. RETURN
  403. *
  404. * End of CPSTF2
  405. *
  406. END