|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406 |
- *> \brief \b CPSTF2 computes the Cholesky factorization with complete pivoting of complex Hermitian positive semidefinite matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CPSTF2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpstf2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpstf2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpstf2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * REAL TOL
- * INTEGER INFO, LDA, N, RANK
- * CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * )
- * REAL WORK( 2*N )
- * INTEGER PIV( N )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CPSTF2 computes the Cholesky factorization with complete
- *> pivoting of a complex Hermitian positive semidefinite matrix A.
- *>
- *> The factorization has the form
- *> P**T * A * P = U**H * U , if UPLO = 'U',
- *> P**T * A * P = L * L**H, if UPLO = 'L',
- *> where U is an upper triangular matrix and L is lower triangular, and
- *> P is stored as vector PIV.
- *>
- *> This algorithm does not attempt to check that A is positive
- *> semidefinite. This version of the algorithm calls level 2 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> symmetric matrix A is stored.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
- *> n by n upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading n by n lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *>
- *> On exit, if INFO = 0, the factor U or L from the Cholesky
- *> factorization as above.
- *> \endverbatim
- *>
- *> \param[out] PIV
- *> \verbatim
- *> PIV is INTEGER array, dimension (N)
- *> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
- *> \endverbatim
- *>
- *> \param[out] RANK
- *> \verbatim
- *> RANK is INTEGER
- *> The rank of A given by the number of steps the algorithm
- *> completed.
- *> \endverbatim
- *>
- *> \param[in] TOL
- *> \verbatim
- *> TOL is REAL
- *> User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
- *> will be used. The algorithm terminates at the (K-1)st step
- *> if the pivot <= TOL.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (2*N)
- *> Work space.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> < 0: If INFO = -K, the K-th argument had an illegal value,
- *> = 0: algorithm completed successfully, and
- *> > 0: the matrix A is either rank deficient with computed rank
- *> as returned in RANK, or is not positive semidefinite. See
- *> Section 7 of LAPACK Working Note #161 for further
- *> information.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE CPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- REAL TOL
- INTEGER INFO, LDA, N, RANK
- CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * )
- REAL WORK( 2*N )
- INTEGER PIV( N )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- COMPLEX CONE
- PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- COMPLEX CTEMP
- REAL AJJ, SSTOP, STEMP
- INTEGER I, ITEMP, J, PVT
- LOGICAL UPPER
- * ..
- * .. External Functions ..
- REAL SLAMCH
- LOGICAL LSAME, SISNAN
- EXTERNAL SLAMCH, LSAME, SISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMV, CLACGV, CSSCAL, CSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG, MAX, REAL, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CPSTF2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Initialize PIV
- *
- DO 100 I = 1, N
- PIV( I ) = I
- 100 CONTINUE
- *
- * Compute stopping value
- *
- DO 110 I = 1, N
- WORK( I ) = REAL( A( I, I ) )
- 110 CONTINUE
- PVT = MAXLOC( WORK( 1:N ), 1 )
- AJJ = REAL ( A( PVT, PVT ) )
- IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
- RANK = 0
- INFO = 1
- GO TO 200
- END IF
- *
- * Compute stopping value if not supplied
- *
- IF( TOL.LT.ZERO ) THEN
- SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ
- ELSE
- SSTOP = TOL
- END IF
- *
- * Set first half of WORK to zero, holds dot products
- *
- DO 120 I = 1, N
- WORK( I ) = 0
- 120 CONTINUE
- *
- IF( UPPER ) THEN
- *
- * Compute the Cholesky factorization P**T * A * P = U**H * U
- *
- DO 150 J = 1, N
- *
- * Find pivot, test for exit, else swap rows and columns
- * Update dot products, compute possible pivots which are
- * stored in the second half of WORK
- *
- DO 130 I = J, N
- *
- IF( J.GT.1 ) THEN
- WORK( I ) = WORK( I ) +
- $ REAL( CONJG( A( J-1, I ) )*
- $ A( J-1, I ) )
- END IF
- WORK( N+I ) = REAL( A( I, I ) ) - WORK( I )
- *
- 130 CONTINUE
- *
- IF( J.GT.1 ) THEN
- ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
- PVT = ITEMP + J - 1
- AJJ = WORK( N+PVT )
- IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
- A( J, J ) = AJJ
- GO TO 190
- END IF
- END IF
- *
- IF( J.NE.PVT ) THEN
- *
- * Pivot OK, so can now swap pivot rows and columns
- *
- A( PVT, PVT ) = A( J, J )
- CALL CSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
- IF( PVT.LT.N )
- $ CALL CSWAP( N-PVT, A( J, PVT+1 ), LDA,
- $ A( PVT, PVT+1 ), LDA )
- DO 140 I = J + 1, PVT - 1
- CTEMP = CONJG( A( J, I ) )
- A( J, I ) = CONJG( A( I, PVT ) )
- A( I, PVT ) = CTEMP
- 140 CONTINUE
- A( J, PVT ) = CONJG( A( J, PVT ) )
- *
- * Swap dot products and PIV
- *
- STEMP = WORK( J )
- WORK( J ) = WORK( PVT )
- WORK( PVT ) = STEMP
- ITEMP = PIV( PVT )
- PIV( PVT ) = PIV( J )
- PIV( J ) = ITEMP
- END IF
- *
- AJJ = SQRT( AJJ )
- A( J, J ) = AJJ
- *
- * Compute elements J+1:N of row J
- *
- IF( J.LT.N ) THEN
- CALL CLACGV( J-1, A( 1, J ), 1 )
- CALL CGEMV( 'Trans', J-1, N-J, -CONE, A( 1, J+1 ), LDA,
- $ A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
- CALL CLACGV( J-1, A( 1, J ), 1 )
- CALL CSSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
- END IF
- *
- 150 CONTINUE
- *
- ELSE
- *
- * Compute the Cholesky factorization P**T * A * P = L * L**H
- *
- DO 180 J = 1, N
- *
- * Find pivot, test for exit, else swap rows and columns
- * Update dot products, compute possible pivots which are
- * stored in the second half of WORK
- *
- DO 160 I = J, N
- *
- IF( J.GT.1 ) THEN
- WORK( I ) = WORK( I ) +
- $ REAL( CONJG( A( I, J-1 ) )*
- $ A( I, J-1 ) )
- END IF
- WORK( N+I ) = REAL( A( I, I ) ) - WORK( I )
- *
- 160 CONTINUE
- *
- IF( J.GT.1 ) THEN
- ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
- PVT = ITEMP + J - 1
- AJJ = WORK( N+PVT )
- IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
- A( J, J ) = AJJ
- GO TO 190
- END IF
- END IF
- *
- IF( J.NE.PVT ) THEN
- *
- * Pivot OK, so can now swap pivot rows and columns
- *
- A( PVT, PVT ) = A( J, J )
- CALL CSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
- IF( PVT.LT.N )
- $ CALL CSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
- $ 1 )
- DO 170 I = J + 1, PVT - 1
- CTEMP = CONJG( A( I, J ) )
- A( I, J ) = CONJG( A( PVT, I ) )
- A( PVT, I ) = CTEMP
- 170 CONTINUE
- A( PVT, J ) = CONJG( A( PVT, J ) )
- *
- * Swap dot products and PIV
- *
- STEMP = WORK( J )
- WORK( J ) = WORK( PVT )
- WORK( PVT ) = STEMP
- ITEMP = PIV( PVT )
- PIV( PVT ) = PIV( J )
- PIV( J ) = ITEMP
- END IF
- *
- AJJ = SQRT( AJJ )
- A( J, J ) = AJJ
- *
- * Compute elements J+1:N of column J
- *
- IF( J.LT.N ) THEN
- CALL CLACGV( J-1, A( J, 1 ), LDA )
- CALL CGEMV( 'No Trans', N-J, J-1, -CONE, A( J+1, 1 ),
- $ LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
- CALL CLACGV( J-1, A( J, 1 ), LDA )
- CALL CSSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
- END IF
- *
- 180 CONTINUE
- *
- END IF
- *
- * Ran to completion, A has full rank
- *
- RANK = N
- *
- GO TO 200
- 190 CONTINUE
- *
- * Rank is number of steps completed. Set INFO = 1 to signal
- * that the factorization cannot be used to solve a system.
- *
- RANK = J - 1
- INFO = 1
- *
- 200 CONTINUE
- RETURN
- *
- * End of CPSTF2
- *
- END
|