You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clanhp.f 9.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. *> \brief \b CLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLANHP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clanhp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clanhp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clanhp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION CLANHP( NORM, UPLO, N, AP, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM, UPLO
  25. * INTEGER N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL WORK( * )
  29. * COMPLEX AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CLANHP returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> complex hermitian matrix A, supplied in packed form.
  41. *> \endverbatim
  42. *>
  43. *> \return CLANHP
  44. *> \verbatim
  45. *>
  46. *> CLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in CLANHP as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the upper or lower triangular part of the
  74. *> hermitian matrix A is supplied.
  75. *> = 'U': Upper triangular part of A is supplied
  76. *> = 'L': Lower triangular part of A is supplied
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The order of the matrix A. N >= 0. When N = 0, CLANHP is
  83. *> set to zero.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] AP
  87. *> \verbatim
  88. *> AP is COMPLEX array, dimension (N*(N+1)/2)
  89. *> The upper or lower triangle of the hermitian matrix A, packed
  90. *> columnwise in a linear array. The j-th column of A is stored
  91. *> in the array AP as follows:
  92. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  93. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  94. *> Note that the imaginary parts of the diagonal elements need
  95. *> not be set and are assumed to be zero.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] WORK
  99. *> \verbatim
  100. *> WORK is REAL array, dimension (MAX(1,LWORK)),
  101. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  102. *> WORK is not referenced.
  103. *> \endverbatim
  104. *
  105. * Authors:
  106. * ========
  107. *
  108. *> \author Univ. of Tennessee
  109. *> \author Univ. of California Berkeley
  110. *> \author Univ. of Colorado Denver
  111. *> \author NAG Ltd.
  112. *
  113. *> \date December 2016
  114. *
  115. *> \ingroup complexOTHERauxiliary
  116. *
  117. * =====================================================================
  118. REAL FUNCTION CLANHP( NORM, UPLO, N, AP, WORK )
  119. *
  120. * -- LAPACK auxiliary routine (version 3.7.0) --
  121. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  122. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  123. * December 2016
  124. *
  125. IMPLICIT NONE
  126. * .. Scalar Arguments ..
  127. CHARACTER NORM, UPLO
  128. INTEGER N
  129. * ..
  130. * .. Array Arguments ..
  131. REAL WORK( * )
  132. COMPLEX AP( * )
  133. * ..
  134. *
  135. * =====================================================================
  136. *
  137. * .. Parameters ..
  138. REAL ONE, ZERO
  139. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  140. * ..
  141. * .. Local Scalars ..
  142. INTEGER I, J, K
  143. REAL ABSA, SUM, VALUE
  144. * ..
  145. * .. Local Arrays ..
  146. REAL SSQ( 2 ), COLSSQ( 2 )
  147. * ..
  148. * .. External Functions ..
  149. LOGICAL LSAME, SISNAN
  150. EXTERNAL LSAME, SISNAN
  151. * ..
  152. * .. External Subroutines ..
  153. EXTERNAL CLASSQ, SCOMBSSQ
  154. * ..
  155. * .. Intrinsic Functions ..
  156. INTRINSIC ABS, REAL, SQRT
  157. * ..
  158. * .. Executable Statements ..
  159. *
  160. IF( N.EQ.0 ) THEN
  161. VALUE = ZERO
  162. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  163. *
  164. * Find max(abs(A(i,j))).
  165. *
  166. VALUE = ZERO
  167. IF( LSAME( UPLO, 'U' ) ) THEN
  168. K = 0
  169. DO 20 J = 1, N
  170. DO 10 I = K + 1, K + J - 1
  171. SUM = ABS( AP( I ) )
  172. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  173. 10 CONTINUE
  174. K = K + J
  175. SUM = ABS( REAL( AP( K ) ) )
  176. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  177. 20 CONTINUE
  178. ELSE
  179. K = 1
  180. DO 40 J = 1, N
  181. SUM = ABS( REAL( AP( K ) ) )
  182. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  183. DO 30 I = K + 1, K + N - J
  184. SUM = ABS( AP( I ) )
  185. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  186. 30 CONTINUE
  187. K = K + N - J + 1
  188. 40 CONTINUE
  189. END IF
  190. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  191. $ ( NORM.EQ.'1' ) ) THEN
  192. *
  193. * Find normI(A) ( = norm1(A), since A is hermitian).
  194. *
  195. VALUE = ZERO
  196. K = 1
  197. IF( LSAME( UPLO, 'U' ) ) THEN
  198. DO 60 J = 1, N
  199. SUM = ZERO
  200. DO 50 I = 1, J - 1
  201. ABSA = ABS( AP( K ) )
  202. SUM = SUM + ABSA
  203. WORK( I ) = WORK( I ) + ABSA
  204. K = K + 1
  205. 50 CONTINUE
  206. WORK( J ) = SUM + ABS( REAL( AP( K ) ) )
  207. K = K + 1
  208. 60 CONTINUE
  209. DO 70 I = 1, N
  210. SUM = WORK( I )
  211. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  212. 70 CONTINUE
  213. ELSE
  214. DO 80 I = 1, N
  215. WORK( I ) = ZERO
  216. 80 CONTINUE
  217. DO 100 J = 1, N
  218. SUM = WORK( J ) + ABS( REAL( AP( K ) ) )
  219. K = K + 1
  220. DO 90 I = J + 1, N
  221. ABSA = ABS( AP( K ) )
  222. SUM = SUM + ABSA
  223. WORK( I ) = WORK( I ) + ABSA
  224. K = K + 1
  225. 90 CONTINUE
  226. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  227. 100 CONTINUE
  228. END IF
  229. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  230. *
  231. * Find normF(A).
  232. * SSQ(1) is scale
  233. * SSQ(2) is sum-of-squares
  234. * For better accuracy, sum each column separately.
  235. *
  236. SSQ( 1 ) = ZERO
  237. SSQ( 2 ) = ONE
  238. *
  239. * Sum off-diagonals
  240. *
  241. K = 2
  242. IF( LSAME( UPLO, 'U' ) ) THEN
  243. DO 110 J = 2, N
  244. COLSSQ( 1 ) = ZERO
  245. COLSSQ( 2 ) = ONE
  246. CALL CLASSQ( J-1, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  247. CALL SCOMBSSQ( SSQ, COLSSQ )
  248. K = K + J
  249. 110 CONTINUE
  250. ELSE
  251. DO 120 J = 1, N - 1
  252. COLSSQ( 1 ) = ZERO
  253. COLSSQ( 2 ) = ONE
  254. CALL CLASSQ( N-J, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  255. CALL SCOMBSSQ( SSQ, COLSSQ )
  256. K = K + N - J + 1
  257. 120 CONTINUE
  258. END IF
  259. SSQ( 2 ) = 2*SSQ( 2 )
  260. *
  261. * Sum diagonal
  262. *
  263. K = 1
  264. COLSSQ( 1 ) = ZERO
  265. COLSSQ( 2 ) = ONE
  266. DO 130 I = 1, N
  267. IF( REAL( AP( K ) ).NE.ZERO ) THEN
  268. ABSA = ABS( REAL( AP( K ) ) )
  269. IF( COLSSQ( 1 ).LT.ABSA ) THEN
  270. COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
  271. COLSSQ( 1 ) = ABSA
  272. ELSE
  273. COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
  274. END IF
  275. END IF
  276. IF( LSAME( UPLO, 'U' ) ) THEN
  277. K = K + I + 1
  278. ELSE
  279. K = K + N - I + 1
  280. END IF
  281. 130 CONTINUE
  282. CALL SCOMBSSQ( SSQ, COLSSQ )
  283. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  284. END IF
  285. *
  286. CLANHP = VALUE
  287. RETURN
  288. *
  289. * End of CLANHP
  290. *
  291. END