You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_hercond_c.f 8.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. *> \brief \b CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefinite matrices.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_HERCOND_C + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_hercond_c.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_hercond_c.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_hercond_c.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION CLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
  22. * CAPPLY, INFO, WORK, RWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * LOGICAL CAPPLY
  27. * INTEGER N, LDA, LDAF, INFO
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IPIV( * )
  31. * COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * )
  32. * REAL C ( * ), RWORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> CLA_HERCOND_C computes the infinity norm condition number of
  42. *> op(A) * inv(diag(C)) where C is a REAL vector.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] UPLO
  49. *> \verbatim
  50. *> UPLO is CHARACTER*1
  51. *> = 'U': Upper triangle of A is stored;
  52. *> = 'L': Lower triangle of A is stored.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The number of linear equations, i.e., the order of the
  59. *> matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] A
  63. *> \verbatim
  64. *> A is COMPLEX array, dimension (LDA,N)
  65. *> On entry, the N-by-N matrix A
  66. *> \endverbatim
  67. *>
  68. *> \param[in] LDA
  69. *> \verbatim
  70. *> LDA is INTEGER
  71. *> The leading dimension of the array A. LDA >= max(1,N).
  72. *> \endverbatim
  73. *>
  74. *> \param[in] AF
  75. *> \verbatim
  76. *> AF is COMPLEX array, dimension (LDAF,N)
  77. *> The block diagonal matrix D and the multipliers used to
  78. *> obtain the factor U or L as computed by CHETRF.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDAF
  82. *> \verbatim
  83. *> LDAF is INTEGER
  84. *> The leading dimension of the array AF. LDAF >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[in] IPIV
  88. *> \verbatim
  89. *> IPIV is INTEGER array, dimension (N)
  90. *> Details of the interchanges and the block structure of D
  91. *> as determined by CHETRF.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] C
  95. *> \verbatim
  96. *> C is REAL array, dimension (N)
  97. *> The vector C in the formula op(A) * inv(diag(C)).
  98. *> \endverbatim
  99. *>
  100. *> \param[in] CAPPLY
  101. *> \verbatim
  102. *> CAPPLY is LOGICAL
  103. *> If .TRUE. then access the vector C in the formula above.
  104. *> \endverbatim
  105. *>
  106. *> \param[out] INFO
  107. *> \verbatim
  108. *> INFO is INTEGER
  109. *> = 0: Successful exit.
  110. *> i > 0: The ith argument is invalid.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] WORK
  114. *> \verbatim
  115. *> WORK is COMPLEX array, dimension (2*N).
  116. *> Workspace.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] RWORK
  120. *> \verbatim
  121. *> RWORK is REAL array, dimension (N).
  122. *> Workspace.
  123. *> \endverbatim
  124. *
  125. * Authors:
  126. * ========
  127. *
  128. *> \author Univ. of Tennessee
  129. *> \author Univ. of California Berkeley
  130. *> \author Univ. of Colorado Denver
  131. *> \author NAG Ltd.
  132. *
  133. *> \date December 2016
  134. *
  135. *> \ingroup complexHEcomputational
  136. *
  137. * =====================================================================
  138. REAL FUNCTION CLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
  139. $ CAPPLY, INFO, WORK, RWORK )
  140. *
  141. * -- LAPACK computational routine (version 3.7.0) --
  142. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  143. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  144. * December 2016
  145. *
  146. * .. Scalar Arguments ..
  147. CHARACTER UPLO
  148. LOGICAL CAPPLY
  149. INTEGER N, LDA, LDAF, INFO
  150. * ..
  151. * .. Array Arguments ..
  152. INTEGER IPIV( * )
  153. COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * )
  154. REAL C ( * ), RWORK( * )
  155. * ..
  156. *
  157. * =====================================================================
  158. *
  159. * .. Local Scalars ..
  160. INTEGER KASE, I, J
  161. REAL AINVNM, ANORM, TMP
  162. LOGICAL UP, UPPER
  163. COMPLEX ZDUM
  164. * ..
  165. * .. Local Arrays ..
  166. INTEGER ISAVE( 3 )
  167. * ..
  168. * .. External Functions ..
  169. LOGICAL LSAME
  170. EXTERNAL LSAME
  171. * ..
  172. * .. External Subroutines ..
  173. EXTERNAL CLACN2, CHETRS, XERBLA
  174. * ..
  175. * .. Intrinsic Functions ..
  176. INTRINSIC ABS, MAX
  177. * ..
  178. * .. Statement Functions ..
  179. REAL CABS1
  180. * ..
  181. * .. Statement Function Definitions ..
  182. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  183. * ..
  184. * .. Executable Statements ..
  185. *
  186. CLA_HERCOND_C = 0.0E+0
  187. *
  188. INFO = 0
  189. UPPER = LSAME( UPLO, 'U' )
  190. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  191. INFO = -1
  192. ELSE IF( N.LT.0 ) THEN
  193. INFO = -2
  194. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  195. INFO = -4
  196. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  197. INFO = -6
  198. END IF
  199. IF( INFO.NE.0 ) THEN
  200. CALL XERBLA( 'CLA_HERCOND_C', -INFO )
  201. RETURN
  202. END IF
  203. UP = .FALSE.
  204. IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  205. *
  206. * Compute norm of op(A)*op2(C).
  207. *
  208. ANORM = 0.0E+0
  209. IF ( UP ) THEN
  210. DO I = 1, N
  211. TMP = 0.0E+0
  212. IF ( CAPPLY ) THEN
  213. DO J = 1, I
  214. TMP = TMP + CABS1( A( J, I ) ) / C( J )
  215. END DO
  216. DO J = I+1, N
  217. TMP = TMP + CABS1( A( I, J ) ) / C( J )
  218. END DO
  219. ELSE
  220. DO J = 1, I
  221. TMP = TMP + CABS1( A( J, I ) )
  222. END DO
  223. DO J = I+1, N
  224. TMP = TMP + CABS1( A( I, J ) )
  225. END DO
  226. END IF
  227. RWORK( I ) = TMP
  228. ANORM = MAX( ANORM, TMP )
  229. END DO
  230. ELSE
  231. DO I = 1, N
  232. TMP = 0.0E+0
  233. IF ( CAPPLY ) THEN
  234. DO J = 1, I
  235. TMP = TMP + CABS1( A( I, J ) ) / C( J )
  236. END DO
  237. DO J = I+1, N
  238. TMP = TMP + CABS1( A( J, I ) ) / C( J )
  239. END DO
  240. ELSE
  241. DO J = 1, I
  242. TMP = TMP + CABS1( A( I, J ) )
  243. END DO
  244. DO J = I+1, N
  245. TMP = TMP + CABS1( A( J, I ) )
  246. END DO
  247. END IF
  248. RWORK( I ) = TMP
  249. ANORM = MAX( ANORM, TMP )
  250. END DO
  251. END IF
  252. *
  253. * Quick return if possible.
  254. *
  255. IF( N.EQ.0 ) THEN
  256. CLA_HERCOND_C = 1.0E+0
  257. RETURN
  258. ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
  259. RETURN
  260. END IF
  261. *
  262. * Estimate the norm of inv(op(A)).
  263. *
  264. AINVNM = 0.0E+0
  265. *
  266. KASE = 0
  267. 10 CONTINUE
  268. CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  269. IF( KASE.NE.0 ) THEN
  270. IF( KASE.EQ.2 ) THEN
  271. *
  272. * Multiply by R.
  273. *
  274. DO I = 1, N
  275. WORK( I ) = WORK( I ) * RWORK( I )
  276. END DO
  277. *
  278. IF ( UP ) THEN
  279. CALL CHETRS( 'U', N, 1, AF, LDAF, IPIV,
  280. $ WORK, N, INFO )
  281. ELSE
  282. CALL CHETRS( 'L', N, 1, AF, LDAF, IPIV,
  283. $ WORK, N, INFO )
  284. ENDIF
  285. *
  286. * Multiply by inv(C).
  287. *
  288. IF ( CAPPLY ) THEN
  289. DO I = 1, N
  290. WORK( I ) = WORK( I ) * C( I )
  291. END DO
  292. END IF
  293. ELSE
  294. *
  295. * Multiply by inv(C**H).
  296. *
  297. IF ( CAPPLY ) THEN
  298. DO I = 1, N
  299. WORK( I ) = WORK( I ) * C( I )
  300. END DO
  301. END IF
  302. *
  303. IF ( UP ) THEN
  304. CALL CHETRS( 'U', N, 1, AF, LDAF, IPIV,
  305. $ WORK, N, INFO )
  306. ELSE
  307. CALL CHETRS( 'L', N, 1, AF, LDAF, IPIV,
  308. $ WORK, N, INFO )
  309. END IF
  310. *
  311. * Multiply by R.
  312. *
  313. DO I = 1, N
  314. WORK( I ) = WORK( I ) * RWORK( I )
  315. END DO
  316. END IF
  317. GO TO 10
  318. END IF
  319. *
  320. * Compute the estimate of the reciprocal condition number.
  321. *
  322. IF( AINVNM .NE. 0.0E+0 )
  323. $ CLA_HERCOND_C = 1.0E+0 / AINVNM
  324. *
  325. RETURN
  326. *
  327. END