|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 |
- *> \brief \b CLA_GBRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general banded matrices.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLA_GBRCOND_C + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gbrcond_c.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gbrcond_c.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gbrcond_c.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * REAL FUNCTION CLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
- * LDAFB, IPIV, C, CAPPLY, INFO, WORK,
- * RWORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * LOGICAL CAPPLY
- * INTEGER N, KL, KU, KD, KE, LDAB, LDAFB, INFO
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), WORK( * )
- * REAL C( * ), RWORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLA_GBRCOND_C Computes the infinity norm condition number of
- *> op(A) * inv(diag(C)) where C is a REAL vector.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations:
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is COMPLEX array, dimension (LDAB,N)
- *> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
- *> The j-th column of A is stored in the j-th column of the
- *> array AB as follows:
- *> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in] AFB
- *> \verbatim
- *> AFB is COMPLEX array, dimension (LDAFB,N)
- *> Details of the LU factorization of the band matrix A, as
- *> computed by CGBTRF. U is stored as an upper triangular
- *> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
- *> and the multipliers used during the factorization are stored
- *> in rows KL+KU+2 to 2*KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in] LDAFB
- *> \verbatim
- *> LDAFB is INTEGER
- *> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices from the factorization A = P*L*U
- *> as computed by CGBTRF; row i of the matrix was interchanged
- *> with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is REAL array, dimension (N)
- *> The vector C in the formula op(A) * inv(diag(C)).
- *> \endverbatim
- *>
- *> \param[in] CAPPLY
- *> \verbatim
- *> CAPPLY is LOGICAL
- *> If .TRUE. then access the vector C in the formula above.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: Successful exit.
- *> i > 0: The ith argument is invalid.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (2*N).
- *> Workspace.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N).
- *> Workspace.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexGBcomputational
- *
- * =====================================================================
- REAL FUNCTION CLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
- $ LDAFB, IPIV, C, CAPPLY, INFO, WORK,
- $ RWORK )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- LOGICAL CAPPLY
- INTEGER N, KL, KU, KD, KE, LDAB, LDAFB, INFO
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), WORK( * )
- REAL C( * ), RWORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL NOTRANS
- INTEGER KASE, I, J
- REAL AINVNM, ANORM, TMP
- COMPLEX ZDUM
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CLACN2, CGBTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Statement Functions ..
- REAL CABS1
- * ..
- * .. Statement Function Definitions ..
- CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- CLA_GBRCOND_C = 0.0E+0
- *
- INFO = 0
- NOTRANS = LSAME( TRANS, 'N' )
- IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
- INFO = -3
- ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.KL+KU+1 ) THEN
- INFO = -6
- ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CLA_GBRCOND_C', -INFO )
- RETURN
- END IF
- *
- * Compute norm of op(A)*op2(C).
- *
- ANORM = 0.0E+0
- KD = KU + 1
- KE = KL + 1
- IF ( NOTRANS ) THEN
- DO I = 1, N
- TMP = 0.0E+0
- IF ( CAPPLY ) THEN
- DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
- TMP = TMP + CABS1( AB( KD+I-J, J ) ) / C( J )
- END DO
- ELSE
- DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
- TMP = TMP + CABS1( AB( KD+I-J, J ) )
- END DO
- END IF
- RWORK( I ) = TMP
- ANORM = MAX( ANORM, TMP )
- END DO
- ELSE
- DO I = 1, N
- TMP = 0.0E+0
- IF ( CAPPLY ) THEN
- DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
- TMP = TMP + CABS1( AB( KE-I+J, I ) ) / C( J )
- END DO
- ELSE
- DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
- TMP = TMP + CABS1( AB( KE-I+J, I ) )
- END DO
- END IF
- RWORK( I ) = TMP
- ANORM = MAX( ANORM, TMP )
- END DO
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 ) THEN
- CLA_GBRCOND_C = 1.0E+0
- RETURN
- ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
- RETURN
- END IF
- *
- * Estimate the norm of inv(op(A)).
- *
- AINVNM = 0.0E+0
- *
- KASE = 0
- 10 CONTINUE
- CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.2 ) THEN
- *
- * Multiply by R.
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) * RWORK( I )
- END DO
- *
- IF ( NOTRANS ) THEN
- CALL CGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
- $ IPIV, WORK, N, INFO )
- ELSE
- CALL CGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
- $ LDAFB, IPIV, WORK, N, INFO )
- ENDIF
- *
- * Multiply by inv(C).
- *
- IF ( CAPPLY ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) * C( I )
- END DO
- END IF
- ELSE
- *
- * Multiply by inv(C**H).
- *
- IF ( CAPPLY ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) * C( I )
- END DO
- END IF
- *
- IF ( NOTRANS ) THEN
- CALL CGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
- $ LDAFB, IPIV, WORK, N, INFO )
- ELSE
- CALL CGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
- $ IPIV, WORK, N, INFO )
- END IF
- *
- * Multiply by R.
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) * RWORK( I )
- END DO
- END IF
- GO TO 10
- END IF
- *
- * Compute the estimate of the reciprocal condition number.
- *
- IF( AINVNM .NE. 0.0E+0 )
- $ CLA_GBRCOND_C = 1.0E+0 / AINVNM
- *
- RETURN
- *
- END
|