You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chptrs.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. *> \brief \b CHPTRS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHPTRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chptrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chptrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chptrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDB, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX AP( * ), B( LDB, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CHPTRS solves a system of linear equations A*X = B with a complex
  39. *> Hermitian matrix A stored in packed format using the factorization
  40. *> A = U*D*U**H or A = L*D*L**H computed by CHPTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**H;
  52. *> = 'L': Lower triangular, form is A = L*D*L**H.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] NRHS
  62. *> \verbatim
  63. *> NRHS is INTEGER
  64. *> The number of right hand sides, i.e., the number of columns
  65. *> of the matrix B. NRHS >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] AP
  69. *> \verbatim
  70. *> AP is COMPLEX array, dimension (N*(N+1)/2)
  71. *> The block diagonal matrix D and the multipliers used to
  72. *> obtain the factor U or L as computed by CHPTRF, stored as a
  73. *> packed triangular matrix.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] IPIV
  77. *> \verbatim
  78. *> IPIV is INTEGER array, dimension (N)
  79. *> Details of the interchanges and the block structure of D
  80. *> as determined by CHPTRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[in,out] B
  84. *> \verbatim
  85. *> B is COMPLEX array, dimension (LDB,NRHS)
  86. *> On entry, the right hand side matrix B.
  87. *> On exit, the solution matrix X.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDB
  91. *> \verbatim
  92. *> LDB is INTEGER
  93. *> The leading dimension of the array B. LDB >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[out] INFO
  97. *> \verbatim
  98. *> INFO is INTEGER
  99. *> = 0: successful exit
  100. *> < 0: if INFO = -i, the i-th argument had an illegal value
  101. *> \endverbatim
  102. *
  103. * Authors:
  104. * ========
  105. *
  106. *> \author Univ. of Tennessee
  107. *> \author Univ. of California Berkeley
  108. *> \author Univ. of Colorado Denver
  109. *> \author NAG Ltd.
  110. *
  111. *> \date December 2016
  112. *
  113. *> \ingroup complexOTHERcomputational
  114. *
  115. * =====================================================================
  116. SUBROUTINE CHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
  117. *
  118. * -- LAPACK computational routine (version 3.7.0) --
  119. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  120. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  121. * December 2016
  122. *
  123. * .. Scalar Arguments ..
  124. CHARACTER UPLO
  125. INTEGER INFO, LDB, N, NRHS
  126. * ..
  127. * .. Array Arguments ..
  128. INTEGER IPIV( * )
  129. COMPLEX AP( * ), B( LDB, * )
  130. * ..
  131. *
  132. * =====================================================================
  133. *
  134. * .. Parameters ..
  135. COMPLEX ONE
  136. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  137. * ..
  138. * .. Local Scalars ..
  139. LOGICAL UPPER
  140. INTEGER J, K, KC, KP
  141. REAL S
  142. COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM
  143. * ..
  144. * .. External Functions ..
  145. LOGICAL LSAME
  146. EXTERNAL LSAME
  147. * ..
  148. * .. External Subroutines ..
  149. EXTERNAL CGEMV, CGERU, CLACGV, CSSCAL, CSWAP, XERBLA
  150. * ..
  151. * .. Intrinsic Functions ..
  152. INTRINSIC CONJG, MAX, REAL
  153. * ..
  154. * .. Executable Statements ..
  155. *
  156. INFO = 0
  157. UPPER = LSAME( UPLO, 'U' )
  158. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  159. INFO = -1
  160. ELSE IF( N.LT.0 ) THEN
  161. INFO = -2
  162. ELSE IF( NRHS.LT.0 ) THEN
  163. INFO = -3
  164. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  165. INFO = -7
  166. END IF
  167. IF( INFO.NE.0 ) THEN
  168. CALL XERBLA( 'CHPTRS', -INFO )
  169. RETURN
  170. END IF
  171. *
  172. * Quick return if possible
  173. *
  174. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  175. $ RETURN
  176. *
  177. IF( UPPER ) THEN
  178. *
  179. * Solve A*X = B, where A = U*D*U**H.
  180. *
  181. * First solve U*D*X = B, overwriting B with X.
  182. *
  183. * K is the main loop index, decreasing from N to 1 in steps of
  184. * 1 or 2, depending on the size of the diagonal blocks.
  185. *
  186. K = N
  187. KC = N*( N+1 ) / 2 + 1
  188. 10 CONTINUE
  189. *
  190. * If K < 1, exit from loop.
  191. *
  192. IF( K.LT.1 )
  193. $ GO TO 30
  194. *
  195. KC = KC - K
  196. IF( IPIV( K ).GT.0 ) THEN
  197. *
  198. * 1 x 1 diagonal block
  199. *
  200. * Interchange rows K and IPIV(K).
  201. *
  202. KP = IPIV( K )
  203. IF( KP.NE.K )
  204. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  205. *
  206. * Multiply by inv(U(K)), where U(K) is the transformation
  207. * stored in column K of A.
  208. *
  209. CALL CGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  210. $ B( 1, 1 ), LDB )
  211. *
  212. * Multiply by the inverse of the diagonal block.
  213. *
  214. S = REAL( ONE ) / REAL( AP( KC+K-1 ) )
  215. CALL CSSCAL( NRHS, S, B( K, 1 ), LDB )
  216. K = K - 1
  217. ELSE
  218. *
  219. * 2 x 2 diagonal block
  220. *
  221. * Interchange rows K-1 and -IPIV(K).
  222. *
  223. KP = -IPIV( K )
  224. IF( KP.NE.K-1 )
  225. $ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  226. *
  227. * Multiply by inv(U(K)), where U(K) is the transformation
  228. * stored in columns K-1 and K of A.
  229. *
  230. CALL CGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  231. $ B( 1, 1 ), LDB )
  232. CALL CGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,
  233. $ B( K-1, 1 ), LDB, B( 1, 1 ), LDB )
  234. *
  235. * Multiply by the inverse of the diagonal block.
  236. *
  237. AKM1K = AP( KC+K-2 )
  238. AKM1 = AP( KC-1 ) / AKM1K
  239. AK = AP( KC+K-1 ) / CONJG( AKM1K )
  240. DENOM = AKM1*AK - ONE
  241. DO 20 J = 1, NRHS
  242. BKM1 = B( K-1, J ) / AKM1K
  243. BK = B( K, J ) / CONJG( AKM1K )
  244. B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  245. B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  246. 20 CONTINUE
  247. KC = KC - K + 1
  248. K = K - 2
  249. END IF
  250. *
  251. GO TO 10
  252. 30 CONTINUE
  253. *
  254. * Next solve U**H *X = B, overwriting B with X.
  255. *
  256. * K is the main loop index, increasing from 1 to N in steps of
  257. * 1 or 2, depending on the size of the diagonal blocks.
  258. *
  259. K = 1
  260. KC = 1
  261. 40 CONTINUE
  262. *
  263. * If K > N, exit from loop.
  264. *
  265. IF( K.GT.N )
  266. $ GO TO 50
  267. *
  268. IF( IPIV( K ).GT.0 ) THEN
  269. *
  270. * 1 x 1 diagonal block
  271. *
  272. * Multiply by inv(U**H(K)), where U(K) is the transformation
  273. * stored in column K of A.
  274. *
  275. IF( K.GT.1 ) THEN
  276. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  277. CALL CGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  278. $ LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
  279. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  280. END IF
  281. *
  282. * Interchange rows K and IPIV(K).
  283. *
  284. KP = IPIV( K )
  285. IF( KP.NE.K )
  286. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  287. KC = KC + K
  288. K = K + 1
  289. ELSE
  290. *
  291. * 2 x 2 diagonal block
  292. *
  293. * Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
  294. * stored in columns K and K+1 of A.
  295. *
  296. IF( K.GT.1 ) THEN
  297. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  298. CALL CGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  299. $ LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
  300. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  301. *
  302. CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
  303. CALL CGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  304. $ LDB, AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB )
  305. CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
  306. END IF
  307. *
  308. * Interchange rows K and -IPIV(K).
  309. *
  310. KP = -IPIV( K )
  311. IF( KP.NE.K )
  312. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  313. KC = KC + 2*K + 1
  314. K = K + 2
  315. END IF
  316. *
  317. GO TO 40
  318. 50 CONTINUE
  319. *
  320. ELSE
  321. *
  322. * Solve A*X = B, where A = L*D*L**H.
  323. *
  324. * First solve L*D*X = B, overwriting B with X.
  325. *
  326. * K is the main loop index, increasing from 1 to N in steps of
  327. * 1 or 2, depending on the size of the diagonal blocks.
  328. *
  329. K = 1
  330. KC = 1
  331. 60 CONTINUE
  332. *
  333. * If K > N, exit from loop.
  334. *
  335. IF( K.GT.N )
  336. $ GO TO 80
  337. *
  338. IF( IPIV( K ).GT.0 ) THEN
  339. *
  340. * 1 x 1 diagonal block
  341. *
  342. * Interchange rows K and IPIV(K).
  343. *
  344. KP = IPIV( K )
  345. IF( KP.NE.K )
  346. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  347. *
  348. * Multiply by inv(L(K)), where L(K) is the transformation
  349. * stored in column K of A.
  350. *
  351. IF( K.LT.N )
  352. $ CALL CGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),
  353. $ LDB, B( K+1, 1 ), LDB )
  354. *
  355. * Multiply by the inverse of the diagonal block.
  356. *
  357. S = REAL( ONE ) / REAL( AP( KC ) )
  358. CALL CSSCAL( NRHS, S, B( K, 1 ), LDB )
  359. KC = KC + N - K + 1
  360. K = K + 1
  361. ELSE
  362. *
  363. * 2 x 2 diagonal block
  364. *
  365. * Interchange rows K+1 and -IPIV(K).
  366. *
  367. KP = -IPIV( K )
  368. IF( KP.NE.K+1 )
  369. $ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  370. *
  371. * Multiply by inv(L(K)), where L(K) is the transformation
  372. * stored in columns K and K+1 of A.
  373. *
  374. IF( K.LT.N-1 ) THEN
  375. CALL CGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),
  376. $ LDB, B( K+2, 1 ), LDB )
  377. CALL CGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,
  378. $ B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  379. END IF
  380. *
  381. * Multiply by the inverse of the diagonal block.
  382. *
  383. AKM1K = AP( KC+1 )
  384. AKM1 = AP( KC ) / CONJG( AKM1K )
  385. AK = AP( KC+N-K+1 ) / AKM1K
  386. DENOM = AKM1*AK - ONE
  387. DO 70 J = 1, NRHS
  388. BKM1 = B( K, J ) / CONJG( AKM1K )
  389. BK = B( K+1, J ) / AKM1K
  390. B( K, J ) = ( AK*BKM1-BK ) / DENOM
  391. B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  392. 70 CONTINUE
  393. KC = KC + 2*( N-K ) + 1
  394. K = K + 2
  395. END IF
  396. *
  397. GO TO 60
  398. 80 CONTINUE
  399. *
  400. * Next solve L**H *X = B, overwriting B with X.
  401. *
  402. * K is the main loop index, decreasing from N to 1 in steps of
  403. * 1 or 2, depending on the size of the diagonal blocks.
  404. *
  405. K = N
  406. KC = N*( N+1 ) / 2 + 1
  407. 90 CONTINUE
  408. *
  409. * If K < 1, exit from loop.
  410. *
  411. IF( K.LT.1 )
  412. $ GO TO 100
  413. *
  414. KC = KC - ( N-K+1 )
  415. IF( IPIV( K ).GT.0 ) THEN
  416. *
  417. * 1 x 1 diagonal block
  418. *
  419. * Multiply by inv(L**H(K)), where L(K) is the transformation
  420. * stored in column K of A.
  421. *
  422. IF( K.LT.N ) THEN
  423. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  424. CALL CGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  425. $ B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE,
  426. $ B( K, 1 ), LDB )
  427. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  428. END IF
  429. *
  430. * Interchange rows K and IPIV(K).
  431. *
  432. KP = IPIV( K )
  433. IF( KP.NE.K )
  434. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  435. K = K - 1
  436. ELSE
  437. *
  438. * 2 x 2 diagonal block
  439. *
  440. * Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
  441. * stored in columns K-1 and K of A.
  442. *
  443. IF( K.LT.N ) THEN
  444. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  445. CALL CGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  446. $ B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE,
  447. $ B( K, 1 ), LDB )
  448. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  449. *
  450. CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
  451. CALL CGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  452. $ B( K+1, 1 ), LDB, AP( KC-( N-K ) ), 1, ONE,
  453. $ B( K-1, 1 ), LDB )
  454. CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
  455. END IF
  456. *
  457. * Interchange rows K and -IPIV(K).
  458. *
  459. KP = -IPIV( K )
  460. IF( KP.NE.K )
  461. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  462. KC = KC - ( N-K+2 )
  463. K = K - 2
  464. END IF
  465. *
  466. GO TO 90
  467. 100 CONTINUE
  468. END IF
  469. *
  470. RETURN
  471. *
  472. * End of CHPTRS
  473. *
  474. END