You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetri_3x.f 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649
  1. *> \brief \b CHETRI_3X
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHETRI_3X + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetri_3x.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetri_3x.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetri_3x.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N, NB
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX A( LDA, * ), E( * ), WORK( N+NB+1, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *> CHETRI_3X computes the inverse of a complex Hermitian indefinite
  38. *> matrix A using the factorization computed by CHETRF_RK or CHETRF_BK:
  39. *>
  40. *> A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
  41. *>
  42. *> where U (or L) is unit upper (or lower) triangular matrix,
  43. *> U**H (or L**H) is the conjugate of U (or L), P is a permutation
  44. *> matrix, P**T is the transpose of P, and D is Hermitian and block
  45. *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the details of the factorization are
  57. *> stored as an upper or lower triangular matrix.
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is COMPLEX array, dimension (LDA,N)
  71. *> On entry, diagonal of the block diagonal matrix D and
  72. *> factors U or L as computed by CHETRF_RK and CHETRF_BK:
  73. *> a) ONLY diagonal elements of the Hermitian block diagonal
  74. *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
  75. *> (superdiagonal (or subdiagonal) elements of D
  76. *> should be provided on entry in array E), and
  77. *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
  78. *> If UPLO = 'L': factor L in the subdiagonal part of A.
  79. *>
  80. *> On exit, if INFO = 0, the Hermitian inverse of the original
  81. *> matrix.
  82. *> If UPLO = 'U': the upper triangular part of the inverse
  83. *> is formed and the part of A below the diagonal is not
  84. *> referenced;
  85. *> If UPLO = 'L': the lower triangular part of the inverse
  86. *> is formed and the part of A above the diagonal is not
  87. *> referenced.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDA
  91. *> \verbatim
  92. *> LDA is INTEGER
  93. *> The leading dimension of the array A. LDA >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[in] E
  97. *> \verbatim
  98. *> E is COMPLEX array, dimension (N)
  99. *> On entry, contains the superdiagonal (or subdiagonal)
  100. *> elements of the Hermitian block diagonal matrix D
  101. *> with 1-by-1 or 2-by-2 diagonal blocks, where
  102. *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
  103. *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
  104. *>
  105. *> NOTE: For 1-by-1 diagonal block D(k), where
  106. *> 1 <= k <= N, the element E(k) is not referenced in both
  107. *> UPLO = 'U' or UPLO = 'L' cases.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] IPIV
  111. *> \verbatim
  112. *> IPIV is INTEGER array, dimension (N)
  113. *> Details of the interchanges and the block structure of D
  114. *> as determined by CHETRF_RK or CHETRF_BK.
  115. *> \endverbatim
  116. *>
  117. *> \param[out] WORK
  118. *> \verbatim
  119. *> WORK is COMPLEX array, dimension (N+NB+1,NB+3).
  120. *> \endverbatim
  121. *>
  122. *> \param[in] NB
  123. *> \verbatim
  124. *> NB is INTEGER
  125. *> Block size.
  126. *> \endverbatim
  127. *>
  128. *> \param[out] INFO
  129. *> \verbatim
  130. *> INFO is INTEGER
  131. *> = 0: successful exit
  132. *> < 0: if INFO = -i, the i-th argument had an illegal value
  133. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  134. *> inverse could not be computed.
  135. *> \endverbatim
  136. *
  137. * Authors:
  138. * ========
  139. *
  140. *> \author Univ. of Tennessee
  141. *> \author Univ. of California Berkeley
  142. *> \author Univ. of Colorado Denver
  143. *> \author NAG Ltd.
  144. *
  145. *> \date June 2017
  146. *
  147. *> \ingroup complexHEcomputational
  148. *
  149. *> \par Contributors:
  150. * ==================
  151. *> \verbatim
  152. *>
  153. *> June 2017, Igor Kozachenko,
  154. *> Computer Science Division,
  155. *> University of California, Berkeley
  156. *>
  157. *> \endverbatim
  158. *
  159. * =====================================================================
  160. SUBROUTINE CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  161. *
  162. * -- LAPACK computational routine (version 3.7.1) --
  163. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  164. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165. * June 2017
  166. *
  167. * .. Scalar Arguments ..
  168. CHARACTER UPLO
  169. INTEGER INFO, LDA, N, NB
  170. * ..
  171. * .. Array Arguments ..
  172. INTEGER IPIV( * )
  173. COMPLEX A( LDA, * ), E( * ), WORK( N+NB+1, * )
  174. * ..
  175. *
  176. * =====================================================================
  177. *
  178. * .. Parameters ..
  179. REAL ONE
  180. PARAMETER ( ONE = 1.0E+0 )
  181. COMPLEX CONE, CZERO
  182. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
  183. $ CZERO = ( 0.0E+0, 0.0E+0 ) )
  184. * ..
  185. * .. Local Scalars ..
  186. LOGICAL UPPER
  187. INTEGER CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
  188. REAL AK, AKP1, T
  189. COMPLEX AKKP1, D, U01_I_J, U01_IP1_J, U11_I_J,
  190. $ U11_IP1_J
  191. * ..
  192. * .. External Functions ..
  193. LOGICAL LSAME
  194. EXTERNAL LSAME
  195. * ..
  196. * .. External Subroutines ..
  197. EXTERNAL CGEMM, CHESWAPR, CTRTRI, CTRMM, XERBLA
  198. * ..
  199. * .. Intrinsic Functions ..
  200. INTRINSIC ABS, CONJG, MAX, REAL
  201. * ..
  202. * .. Executable Statements ..
  203. *
  204. * Test the input parameters.
  205. *
  206. INFO = 0
  207. UPPER = LSAME( UPLO, 'U' )
  208. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  209. INFO = -1
  210. ELSE IF( N.LT.0 ) THEN
  211. INFO = -2
  212. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  213. INFO = -4
  214. END IF
  215. *
  216. * Quick return if possible
  217. *
  218. IF( INFO.NE.0 ) THEN
  219. CALL XERBLA( 'CHETRI_3X', -INFO )
  220. RETURN
  221. END IF
  222. IF( N.EQ.0 )
  223. $ RETURN
  224. *
  225. * Workspace got Non-diag elements of D
  226. *
  227. DO K = 1, N
  228. WORK( K, 1 ) = E( K )
  229. END DO
  230. *
  231. * Check that the diagonal matrix D is nonsingular.
  232. *
  233. IF( UPPER ) THEN
  234. *
  235. * Upper triangular storage: examine D from bottom to top
  236. *
  237. DO INFO = N, 1, -1
  238. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  239. $ RETURN
  240. END DO
  241. ELSE
  242. *
  243. * Lower triangular storage: examine D from top to bottom.
  244. *
  245. DO INFO = 1, N
  246. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  247. $ RETURN
  248. END DO
  249. END IF
  250. *
  251. INFO = 0
  252. *
  253. * Splitting Workspace
  254. * U01 is a block ( N, NB+1 )
  255. * The first element of U01 is in WORK( 1, 1 )
  256. * U11 is a block ( NB+1, NB+1 )
  257. * The first element of U11 is in WORK( N+1, 1 )
  258. *
  259. U11 = N
  260. *
  261. * INVD is a block ( N, 2 )
  262. * The first element of INVD is in WORK( 1, INVD )
  263. *
  264. INVD = NB + 2
  265. IF( UPPER ) THEN
  266. *
  267. * Begin Upper
  268. *
  269. * invA = P * inv(U**H) * inv(D) * inv(U) * P**T.
  270. *
  271. CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
  272. *
  273. * inv(D) and inv(D) * inv(U)
  274. *
  275. K = 1
  276. DO WHILE( K.LE.N )
  277. IF( IPIV( K ).GT.0 ) THEN
  278. * 1 x 1 diagonal NNB
  279. WORK( K, INVD ) = ONE / REAL( A( K, K ) )
  280. WORK( K, INVD+1 ) = CZERO
  281. ELSE
  282. * 2 x 2 diagonal NNB
  283. T = ABS( WORK( K+1, 1 ) )
  284. AK = REAL( A( K, K ) ) / T
  285. AKP1 = REAL( A( K+1, K+1 ) ) / T
  286. AKKP1 = WORK( K+1, 1 ) / T
  287. D = T*( AK*AKP1-CONE )
  288. WORK( K, INVD ) = AKP1 / D
  289. WORK( K+1, INVD+1 ) = AK / D
  290. WORK( K, INVD+1 ) = -AKKP1 / D
  291. WORK( K+1, INVD ) = CONJG( WORK( K, INVD+1 ) )
  292. K = K + 1
  293. END IF
  294. K = K + 1
  295. END DO
  296. *
  297. * inv(U**H) = (inv(U))**H
  298. *
  299. * inv(U**H) * inv(D) * inv(U)
  300. *
  301. CUT = N
  302. DO WHILE( CUT.GT.0 )
  303. NNB = NB
  304. IF( CUT.LE.NNB ) THEN
  305. NNB = CUT
  306. ELSE
  307. ICOUNT = 0
  308. * count negative elements,
  309. DO I = CUT+1-NNB, CUT
  310. IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  311. END DO
  312. * need a even number for a clear cut
  313. IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  314. END IF
  315. CUT = CUT - NNB
  316. *
  317. * U01 Block
  318. *
  319. DO I = 1, CUT
  320. DO J = 1, NNB
  321. WORK( I, J ) = A( I, CUT+J )
  322. END DO
  323. END DO
  324. *
  325. * U11 Block
  326. *
  327. DO I = 1, NNB
  328. WORK( U11+I, I ) = CONE
  329. DO J = 1, I-1
  330. WORK( U11+I, J ) = CZERO
  331. END DO
  332. DO J = I+1, NNB
  333. WORK( U11+I, J ) = A( CUT+I, CUT+J )
  334. END DO
  335. END DO
  336. *
  337. * invD * U01
  338. *
  339. I = 1
  340. DO WHILE( I.LE.CUT )
  341. IF( IPIV( I ).GT.0 ) THEN
  342. DO J = 1, NNB
  343. WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
  344. END DO
  345. ELSE
  346. DO J = 1, NNB
  347. U01_I_J = WORK( I, J )
  348. U01_IP1_J = WORK( I+1, J )
  349. WORK( I, J ) = WORK( I, INVD ) * U01_I_J
  350. $ + WORK( I, INVD+1 ) * U01_IP1_J
  351. WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
  352. $ + WORK( I+1, INVD+1 ) * U01_IP1_J
  353. END DO
  354. I = I + 1
  355. END IF
  356. I = I + 1
  357. END DO
  358. *
  359. * invD1 * U11
  360. *
  361. I = 1
  362. DO WHILE ( I.LE.NNB )
  363. IF( IPIV( CUT+I ).GT.0 ) THEN
  364. DO J = I, NNB
  365. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  366. END DO
  367. ELSE
  368. DO J = I, NNB
  369. U11_I_J = WORK(U11+I,J)
  370. U11_IP1_J = WORK(U11+I+1,J)
  371. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  372. $ + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
  373. WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
  374. $ + WORK(CUT+I+1,INVD+1) * U11_IP1_J
  375. END DO
  376. I = I + 1
  377. END IF
  378. I = I + 1
  379. END DO
  380. *
  381. * U11**H * invD1 * U11 -> U11
  382. *
  383. CALL CTRMM( 'L', 'U', 'C', 'U', NNB, NNB,
  384. $ CONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  385. $ N+NB+1 )
  386. *
  387. DO I = 1, NNB
  388. DO J = I, NNB
  389. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  390. END DO
  391. END DO
  392. *
  393. * U01**H * invD * U01 -> A( CUT+I, CUT+J )
  394. *
  395. CALL CGEMM( 'C', 'N', NNB, NNB, CUT, CONE, A( 1, CUT+1 ),
  396. $ LDA, WORK, N+NB+1, CZERO, WORK(U11+1,1),
  397. $ N+NB+1 )
  398. *
  399. * U11 = U11**H * invD1 * U11 + U01**H * invD * U01
  400. *
  401. DO I = 1, NNB
  402. DO J = I, NNB
  403. A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
  404. END DO
  405. END DO
  406. *
  407. * U01 = U00**H * invD0 * U01
  408. *
  409. CALL CTRMM( 'L', UPLO, 'C', 'U', CUT, NNB,
  410. $ CONE, A, LDA, WORK, N+NB+1 )
  411. *
  412. * Update U01
  413. *
  414. DO I = 1, CUT
  415. DO J = 1, NNB
  416. A( I, CUT+J ) = WORK( I, J )
  417. END DO
  418. END DO
  419. *
  420. * Next Block
  421. *
  422. END DO
  423. *
  424. * Apply PERMUTATIONS P and P**T:
  425. * P * inv(U**H) * inv(D) * inv(U) * P**T.
  426. * Interchange rows and columns I and IPIV(I) in reverse order
  427. * from the formation order of IPIV vector for Upper case.
  428. *
  429. * ( We can use a loop over IPIV with increment 1,
  430. * since the ABS value of IPIV(I) represents the row (column)
  431. * index of the interchange with row (column) i in both 1x1
  432. * and 2x2 pivot cases, i.e. we don't need separate code branches
  433. * for 1x1 and 2x2 pivot cases )
  434. *
  435. DO I = 1, N
  436. IP = ABS( IPIV( I ) )
  437. IF( IP.NE.I ) THEN
  438. IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP )
  439. IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
  440. END IF
  441. END DO
  442. *
  443. ELSE
  444. *
  445. * Begin Lower
  446. *
  447. * inv A = P * inv(L**H) * inv(D) * inv(L) * P**T.
  448. *
  449. CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
  450. *
  451. * inv(D) and inv(D) * inv(L)
  452. *
  453. K = N
  454. DO WHILE ( K .GE. 1 )
  455. IF( IPIV( K ).GT.0 ) THEN
  456. * 1 x 1 diagonal NNB
  457. WORK( K, INVD ) = ONE / REAL( A( K, K ) )
  458. WORK( K, INVD+1 ) = CZERO
  459. ELSE
  460. * 2 x 2 diagonal NNB
  461. T = ABS( WORK( K-1, 1 ) )
  462. AK = REAL( A( K-1, K-1 ) ) / T
  463. AKP1 = REAL( A( K, K ) ) / T
  464. AKKP1 = WORK( K-1, 1 ) / T
  465. D = T*( AK*AKP1-CONE )
  466. WORK( K-1, INVD ) = AKP1 / D
  467. WORK( K, INVD ) = AK / D
  468. WORK( K, INVD+1 ) = -AKKP1 / D
  469. WORK( K-1, INVD+1 ) = CONJG( WORK( K, INVD+1 ) )
  470. K = K - 1
  471. END IF
  472. K = K - 1
  473. END DO
  474. *
  475. * inv(L**H) = (inv(L))**H
  476. *
  477. * inv(L**H) * inv(D) * inv(L)
  478. *
  479. CUT = 0
  480. DO WHILE( CUT.LT.N )
  481. NNB = NB
  482. IF( (CUT + NNB).GT.N ) THEN
  483. NNB = N - CUT
  484. ELSE
  485. ICOUNT = 0
  486. * count negative elements,
  487. DO I = CUT + 1, CUT+NNB
  488. IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  489. END DO
  490. * need a even number for a clear cut
  491. IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  492. END IF
  493. *
  494. * L21 Block
  495. *
  496. DO I = 1, N-CUT-NNB
  497. DO J = 1, NNB
  498. WORK( I, J ) = A( CUT+NNB+I, CUT+J )
  499. END DO
  500. END DO
  501. *
  502. * L11 Block
  503. *
  504. DO I = 1, NNB
  505. WORK( U11+I, I) = CONE
  506. DO J = I+1, NNB
  507. WORK( U11+I, J ) = CZERO
  508. END DO
  509. DO J = 1, I-1
  510. WORK( U11+I, J ) = A( CUT+I, CUT+J )
  511. END DO
  512. END DO
  513. *
  514. * invD*L21
  515. *
  516. I = N-CUT-NNB
  517. DO WHILE( I.GE.1 )
  518. IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
  519. DO J = 1, NNB
  520. WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
  521. END DO
  522. ELSE
  523. DO J = 1, NNB
  524. U01_I_J = WORK(I,J)
  525. U01_IP1_J = WORK(I-1,J)
  526. WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
  527. $ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
  528. WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
  529. $ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
  530. END DO
  531. I = I - 1
  532. END IF
  533. I = I - 1
  534. END DO
  535. *
  536. * invD1*L11
  537. *
  538. I = NNB
  539. DO WHILE( I.GE.1 )
  540. IF( IPIV( CUT+I ).GT.0 ) THEN
  541. DO J = 1, NNB
  542. WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
  543. END DO
  544. ELSE
  545. DO J = 1, NNB
  546. U11_I_J = WORK( U11+I, J )
  547. U11_IP1_J = WORK( U11+I-1, J )
  548. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  549. $ + WORK(CUT+I,INVD+1) * U11_IP1_J
  550. WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
  551. $ + WORK(CUT+I-1,INVD) * U11_IP1_J
  552. END DO
  553. I = I - 1
  554. END IF
  555. I = I - 1
  556. END DO
  557. *
  558. * L11**H * invD1 * L11 -> L11
  559. *
  560. CALL CTRMM( 'L', UPLO, 'C', 'U', NNB, NNB, CONE,
  561. $ A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  562. $ N+NB+1 )
  563. *
  564. DO I = 1, NNB
  565. DO J = 1, I
  566. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  567. END DO
  568. END DO
  569. *
  570. IF( (CUT+NNB).LT.N ) THEN
  571. *
  572. * L21**H * invD2*L21 -> A( CUT+I, CUT+J )
  573. *
  574. CALL CGEMM( 'C', 'N', NNB, NNB, N-NNB-CUT, CONE,
  575. $ A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
  576. $ CZERO, WORK( U11+1, 1 ), N+NB+1 )
  577. *
  578. * L11 = L11**H * invD1 * L11 + U01**H * invD * U01
  579. *
  580. DO I = 1, NNB
  581. DO J = 1, I
  582. A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
  583. END DO
  584. END DO
  585. *
  586. * L01 = L22**H * invD2 * L21
  587. *
  588. CALL CTRMM( 'L', UPLO, 'C', 'U', N-NNB-CUT, NNB, CONE,
  589. $ A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
  590. $ N+NB+1 )
  591. *
  592. * Update L21
  593. *
  594. DO I = 1, N-CUT-NNB
  595. DO J = 1, NNB
  596. A( CUT+NNB+I, CUT+J ) = WORK( I, J )
  597. END DO
  598. END DO
  599. *
  600. ELSE
  601. *
  602. * L11 = L11**H * invD1 * L11
  603. *
  604. DO I = 1, NNB
  605. DO J = 1, I
  606. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  607. END DO
  608. END DO
  609. END IF
  610. *
  611. * Next Block
  612. *
  613. CUT = CUT + NNB
  614. *
  615. END DO
  616. *
  617. * Apply PERMUTATIONS P and P**T:
  618. * P * inv(L**H) * inv(D) * inv(L) * P**T.
  619. * Interchange rows and columns I and IPIV(I) in reverse order
  620. * from the formation order of IPIV vector for Lower case.
  621. *
  622. * ( We can use a loop over IPIV with increment -1,
  623. * since the ABS value of IPIV(I) represents the row (column)
  624. * index of the interchange with row (column) i in both 1x1
  625. * and 2x2 pivot cases, i.e. we don't need separate code branches
  626. * for 1x1 and 2x2 pivot cases )
  627. *
  628. DO I = N, 1, -1
  629. IP = ABS( IPIV( I ) )
  630. IF( IP.NE.I ) THEN
  631. IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP )
  632. IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
  633. END IF
  634. END DO
  635. *
  636. END IF
  637. *
  638. RETURN
  639. *
  640. * End of CHETRI_3X
  641. *
  642. END