|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- *> \brief \b CGELQT
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDT, M, N, MB
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGELQT computes a blocked LQ factorization of a complex M-by-N matrix A
- *> using the compact WY representation of Q.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] MB
- *> \verbatim
- *> MB is INTEGER
- *> The block size to be used in the blocked QR. MIN(M,N) >= MB >= 1.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, the elements on and below the diagonal of the array
- *> contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is
- *> lower triangular if M <= N); the elements above the diagonal
- *> are the rows of V.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is COMPLEX array, dimension (LDT,MIN(M,N))
- *> The upper triangular block reflectors stored in compact form
- *> as a sequence of upper triangular blocks. See below
- *> for further details.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= MB.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MB*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2017
- *
- *> \ingroup doubleGEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix V stores the elementary reflectors H(i) in the i-th row
- *> above the diagonal. For example, if M=5 and N=3, the matrix V is
- *>
- *> V = ( 1 v1 v1 v1 v1 )
- *> ( 1 v2 v2 v2 )
- *> ( 1 v3 v3 )
- *>
- *>
- *> where the vi's represent the vectors which define H(i), which are returned
- *> in the matrix A. The 1's along the diagonal of V are not stored in A.
- *> Let K=MIN(M,N). The number of blocks is B = ceiling(K/MB), where each
- *> block is of order MB except for the last block, which is of order
- *> IB = K - (B-1)*MB. For each of the B blocks, a upper triangular block
- *> reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB
- *> for the last block) T's are stored in the MB-by-K matrix T as
- *>
- *> T = (T1 T2 ... TB).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2017
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDT, M, N, MB
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * ..
- * .. Local Scalars ..
- INTEGER I, IB, IINFO, K
- * ..
- * .. External Subroutines ..
- EXTERNAL CGELQT3, CLARFB, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( MB.LT.1 .OR. (MB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ))THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- ELSE IF( LDT.LT.MB ) THEN
- INFO = -7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGELQT', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- K = MIN( M, N )
- IF( K.EQ.0 ) RETURN
- *
- * Blocked loop of length K
- *
- DO I = 1, K, MB
- IB = MIN( K-I+1, MB )
- *
- * Compute the LQ factorization of the current block A(I:M,I:I+IB-1)
- *
- CALL CGELQT3( IB, N-I+1, A(I,I), LDA, T(1,I), LDT, IINFO )
- IF( I+IB.LE.M ) THEN
- *
- * Update by applying H**T to A(I:M,I+IB:N) from the right
- *
- CALL CLARFB( 'R', 'N', 'F', 'R', M-I-IB+1, N-I+1, IB,
- $ A( I, I ), LDA, T( 1, I ), LDT,
- $ A( I+IB, I ), LDA, WORK , M-I-IB+1 )
- END IF
- END DO
- RETURN
- *
- * End of CGELQT
- *
- END
|