You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stpmvf.f 9.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299
  1. SUBROUTINE STPMVF( UPLO, TRANS, DIAG, N, AP, X, INCX )
  2. * .. Scalar Arguments ..
  3. INTEGER INCX, N
  4. CHARACTER*1 DIAG, TRANS, UPLO
  5. * .. Array Arguments ..
  6. REAL AP( * ), X( * )
  7. * ..
  8. *
  9. * Purpose
  10. * =======
  11. *
  12. * STPMV performs one of the matrix-vector operations
  13. *
  14. * x := A*x, or x := A'*x,
  15. *
  16. * where x is an n element vector and A is an n by n unit, or non-unit,
  17. * upper or lower triangular matrix, supplied in packed form.
  18. *
  19. * Parameters
  20. * ==========
  21. *
  22. * UPLO - CHARACTER*1.
  23. * On entry, UPLO specifies whether the matrix is an upper or
  24. * lower triangular matrix as follows:
  25. *
  26. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  27. *
  28. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  29. *
  30. * Unchanged on exit.
  31. *
  32. * TRANS - CHARACTER*1.
  33. * On entry, TRANS specifies the operation to be performed as
  34. * follows:
  35. *
  36. * TRANS = 'N' or 'n' x := A*x.
  37. *
  38. * TRANS = 'T' or 't' x := A'*x.
  39. *
  40. * TRANS = 'C' or 'c' x := A'*x.
  41. *
  42. * Unchanged on exit.
  43. *
  44. * DIAG - CHARACTER*1.
  45. * On entry, DIAG specifies whether or not A is unit
  46. * triangular as follows:
  47. *
  48. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  49. *
  50. * DIAG = 'N' or 'n' A is not assumed to be unit
  51. * triangular.
  52. *
  53. * Unchanged on exit.
  54. *
  55. * N - INTEGER.
  56. * On entry, N specifies the order of the matrix A.
  57. * N must be at least zero.
  58. * Unchanged on exit.
  59. *
  60. * AP - REAL array of DIMENSION at least
  61. * ( ( n*( n + 1 ) )/2 ).
  62. * Before entry with UPLO = 'U' or 'u', the array AP must
  63. * contain the upper triangular matrix packed sequentially,
  64. * column by column, so that AP( 1 ) contains a( 1, 1 ),
  65. * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
  66. * respectively, and so on.
  67. * Before entry with UPLO = 'L' or 'l', the array AP must
  68. * contain the lower triangular matrix packed sequentially,
  69. * column by column, so that AP( 1 ) contains a( 1, 1 ),
  70. * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
  71. * respectively, and so on.
  72. * Note that when DIAG = 'U' or 'u', the diagonal elements of
  73. * A are not referenced, but are assumed to be unity.
  74. * Unchanged on exit.
  75. *
  76. * X - REAL array of dimension at least
  77. * ( 1 + ( n - 1 )*abs( INCX ) ).
  78. * Before entry, the incremented array X must contain the n
  79. * element vector x. On exit, X is overwritten with the
  80. * tranformed vector x.
  81. *
  82. * INCX - INTEGER.
  83. * On entry, INCX specifies the increment for the elements of
  84. * X. INCX must not be zero.
  85. * Unchanged on exit.
  86. *
  87. *
  88. * Level 2 Blas routine.
  89. *
  90. * -- Written on 22-October-1986.
  91. * Jack Dongarra, Argonne National Lab.
  92. * Jeremy Du Croz, Nag Central Office.
  93. * Sven Hammarling, Nag Central Office.
  94. * Richard Hanson, Sandia National Labs.
  95. *
  96. *
  97. * .. Parameters ..
  98. REAL ZERO
  99. PARAMETER ( ZERO = 0.0E+0 )
  100. * .. Local Scalars ..
  101. REAL TEMP
  102. INTEGER I, INFO, IX, J, JX, K, KK, KX
  103. LOGICAL NOUNIT
  104. * .. External Functions ..
  105. LOGICAL LSAME
  106. EXTERNAL LSAME
  107. * .. External Subroutines ..
  108. EXTERNAL XERBLA
  109. * ..
  110. * .. Executable Statements ..
  111. *
  112. * Test the input parameters.
  113. *
  114. INFO = 0
  115. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  116. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  117. INFO = 1
  118. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  119. $ .NOT.LSAME( TRANS, 'T' ).AND.
  120. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  121. INFO = 2
  122. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  123. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  124. INFO = 3
  125. ELSE IF( N.LT.0 )THEN
  126. INFO = 4
  127. ELSE IF( INCX.EQ.0 )THEN
  128. INFO = 7
  129. END IF
  130. IF( INFO.NE.0 )THEN
  131. CALL XERBLA( 'STPMVF', INFO )
  132. RETURN
  133. END IF
  134. *
  135. * Quick return if possible.
  136. *
  137. IF( N.EQ.0 )
  138. $ RETURN
  139. *
  140. NOUNIT = LSAME( DIAG, 'N' )
  141. *
  142. * Set up the start point in X if the increment is not unity. This
  143. * will be ( N - 1 )*INCX too small for descending loops.
  144. *
  145. IF( INCX.LE.0 )THEN
  146. KX = 1 - ( N - 1 )*INCX
  147. ELSE IF( INCX.NE.1 )THEN
  148. KX = 1
  149. END IF
  150. *
  151. * Start the operations. In this version the elements of AP are
  152. * accessed sequentially with one pass through AP.
  153. *
  154. IF( LSAME( TRANS, 'N' ) )THEN
  155. *
  156. * Form x:= A*x.
  157. *
  158. IF( LSAME( UPLO, 'U' ) )THEN
  159. KK =1
  160. IF( INCX.EQ.1 )THEN
  161. DO 20, J = 1, N
  162. IF( X( J ).NE.ZERO )THEN
  163. TEMP = X( J )
  164. K = KK
  165. DO 10, I = 1, J - 1
  166. X( I ) = X( I ) + TEMP*AP( K )
  167. K = K + 1
  168. 10 CONTINUE
  169. IF( NOUNIT )
  170. $ X( J ) = X( J )*AP( KK + J - 1 )
  171. END IF
  172. KK = KK + J
  173. 20 CONTINUE
  174. ELSE
  175. JX = KX
  176. DO 40, J = 1, N
  177. IF( X( JX ).NE.ZERO )THEN
  178. TEMP = X( JX )
  179. IX = KX
  180. DO 30, K = KK, KK + J - 2
  181. X( IX ) = X( IX ) + TEMP*AP( K )
  182. IX = IX + INCX
  183. 30 CONTINUE
  184. IF( NOUNIT )
  185. $ X( JX ) = X( JX )*AP( KK + J - 1 )
  186. END IF
  187. JX = JX + INCX
  188. KK = KK + J
  189. 40 CONTINUE
  190. END IF
  191. ELSE
  192. KK = ( N*( N + 1 ) )/2
  193. IF( INCX.EQ.1 )THEN
  194. DO 60, J = N, 1, -1
  195. IF( X( J ).NE.ZERO )THEN
  196. TEMP = X( J )
  197. K = KK
  198. DO 50, I = N, J + 1, -1
  199. X( I ) = X( I ) + TEMP*AP( K )
  200. K = K - 1
  201. 50 CONTINUE
  202. IF( NOUNIT )
  203. $ X( J ) = X( J )*AP( KK - N + J )
  204. END IF
  205. KK = KK - ( N - J + 1 )
  206. 60 CONTINUE
  207. ELSE
  208. KX = KX + ( N - 1 )*INCX
  209. JX = KX
  210. DO 80, J = N, 1, -1
  211. IF( X( JX ).NE.ZERO )THEN
  212. TEMP = X( JX )
  213. IX = KX
  214. DO 70, K = KK, KK - ( N - ( J + 1 ) ), -1
  215. X( IX ) = X( IX ) + TEMP*AP( K )
  216. IX = IX - INCX
  217. 70 CONTINUE
  218. IF( NOUNIT )
  219. $ X( JX ) = X( JX )*AP( KK - N + J )
  220. END IF
  221. JX = JX - INCX
  222. KK = KK - ( N - J + 1 )
  223. 80 CONTINUE
  224. END IF
  225. END IF
  226. ELSE
  227. *
  228. * Form x := A'*x.
  229. *
  230. IF( LSAME( UPLO, 'U' ) )THEN
  231. KK = ( N*( N + 1 ) )/2
  232. IF( INCX.EQ.1 )THEN
  233. DO 100, J = N, 1, -1
  234. TEMP = X( J )
  235. IF( NOUNIT )
  236. $ TEMP = TEMP*AP( KK )
  237. K = KK - 1
  238. DO 90, I = J - 1, 1, -1
  239. TEMP = TEMP + AP( K )*X( I )
  240. K = K - 1
  241. 90 CONTINUE
  242. X( J ) = TEMP
  243. KK = KK - J
  244. 100 CONTINUE
  245. ELSE
  246. JX = KX + ( N - 1 )*INCX
  247. DO 120, J = N, 1, -1
  248. TEMP = X( JX )
  249. IX = JX
  250. IF( NOUNIT )
  251. $ TEMP = TEMP*AP( KK )
  252. DO 110, K = KK - 1, KK - J + 1, -1
  253. IX = IX - INCX
  254. TEMP = TEMP + AP( K )*X( IX )
  255. 110 CONTINUE
  256. X( JX ) = TEMP
  257. JX = JX - INCX
  258. KK = KK - J
  259. 120 CONTINUE
  260. END IF
  261. ELSE
  262. KK = 1
  263. IF( INCX.EQ.1 )THEN
  264. DO 140, J = 1, N
  265. TEMP = X( J )
  266. IF( NOUNIT )
  267. $ TEMP = TEMP*AP( KK )
  268. K = KK + 1
  269. DO 130, I = J + 1, N
  270. TEMP = TEMP + AP( K )*X( I )
  271. K = K + 1
  272. 130 CONTINUE
  273. X( J ) = TEMP
  274. KK = KK + ( N - J + 1 )
  275. 140 CONTINUE
  276. ELSE
  277. JX = KX
  278. DO 160, J = 1, N
  279. TEMP = X( JX )
  280. IX = JX
  281. IF( NOUNIT )
  282. $ TEMP = TEMP*AP( KK )
  283. DO 150, K = KK + 1, KK + N - J
  284. IX = IX + INCX
  285. TEMP = TEMP + AP( K )*X( IX )
  286. 150 CONTINUE
  287. X( JX ) = TEMP
  288. JX = JX + INCX
  289. KK = KK + ( N - J + 1 )
  290. 160 CONTINUE
  291. END IF
  292. END IF
  293. END IF
  294. *
  295. RETURN
  296. *
  297. * End of STPMV .
  298. *
  299. END