You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrmmf.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. SUBROUTINE CTRMMF ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
  2. $ B, LDB )
  3. * .. Scalar Arguments ..
  4. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
  5. INTEGER M, N, LDA, LDB
  6. COMPLEX ALPHA
  7. * .. Array Arguments ..
  8. COMPLEX A( LDA, * ), B( LDB, * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * CTRMM performs one of the matrix-matrix operations
  15. *
  16. * B := alpha*op( A )*B, or B := alpha*B*op( A )
  17. *
  18. * where alpha is a scalar, B is an m by n matrix, A is a unit, or
  19. * non-unit, upper or lower triangular matrix and op( A ) is one of
  20. *
  21. * op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
  22. *
  23. * Parameters
  24. * ==========
  25. *
  26. * SIDE - CHARACTER*1.
  27. * On entry, SIDE specifies whether op( A ) multiplies B from
  28. * the left or right as follows:
  29. *
  30. * SIDE = 'L' or 'l' B := alpha*op( A )*B.
  31. *
  32. * SIDE = 'R' or 'r' B := alpha*B*op( A ).
  33. *
  34. * Unchanged on exit.
  35. *
  36. * UPLO - CHARACTER*1.
  37. * On entry, UPLO specifies whether the matrix A is an upper or
  38. * lower triangular matrix as follows:
  39. *
  40. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  41. *
  42. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  43. *
  44. * Unchanged on exit.
  45. *
  46. * TRANSA - CHARACTER*1.
  47. * On entry, TRANSA specifies the form of op( A ) to be used in
  48. * the matrix multiplication as follows:
  49. *
  50. * TRANSA = 'N' or 'n' op( A ) = A.
  51. *
  52. * TRANSA = 'T' or 't' op( A ) = A'.
  53. *
  54. * TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
  55. *
  56. * Unchanged on exit.
  57. *
  58. * DIAG - CHARACTER*1.
  59. * On entry, DIAG specifies whether or not A is unit triangular
  60. * as follows:
  61. *
  62. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  63. *
  64. * DIAG = 'N' or 'n' A is not assumed to be unit
  65. * triangular.
  66. *
  67. * Unchanged on exit.
  68. *
  69. * M - INTEGER.
  70. * On entry, M specifies the number of rows of B. M must be at
  71. * least zero.
  72. * Unchanged on exit.
  73. *
  74. * N - INTEGER.
  75. * On entry, N specifies the number of columns of B. N must be
  76. * at least zero.
  77. * Unchanged on exit.
  78. *
  79. * ALPHA - COMPLEX .
  80. * On entry, ALPHA specifies the scalar alpha. When alpha is
  81. * zero then A is not referenced and B need not be set before
  82. * entry.
  83. * Unchanged on exit.
  84. *
  85. * A - COMPLEX array of DIMENSION ( LDA, k ), where k is m
  86. * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
  87. * Before entry with UPLO = 'U' or 'u', the leading k by k
  88. * upper triangular part of the array A must contain the upper
  89. * triangular matrix and the strictly lower triangular part of
  90. * A is not referenced.
  91. * Before entry with UPLO = 'L' or 'l', the leading k by k
  92. * lower triangular part of the array A must contain the lower
  93. * triangular matrix and the strictly upper triangular part of
  94. * A is not referenced.
  95. * Note that when DIAG = 'U' or 'u', the diagonal elements of
  96. * A are not referenced either, but are assumed to be unity.
  97. * Unchanged on exit.
  98. *
  99. * LDA - INTEGER.
  100. * On entry, LDA specifies the first dimension of A as declared
  101. * in the calling (sub) program. When SIDE = 'L' or 'l' then
  102. * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
  103. * then LDA must be at least max( 1, n ).
  104. * Unchanged on exit.
  105. *
  106. * B - COMPLEX array of DIMENSION ( LDB, n ).
  107. * Before entry, the leading m by n part of the array B must
  108. * contain the matrix B, and on exit is overwritten by the
  109. * transformed matrix.
  110. *
  111. * LDB - INTEGER.
  112. * On entry, LDB specifies the first dimension of B as declared
  113. * in the calling (sub) program. LDB must be at least
  114. * max( 1, m ).
  115. * Unchanged on exit.
  116. *
  117. *
  118. * Level 3 Blas routine.
  119. *
  120. * -- Written on 8-February-1989.
  121. * Jack Dongarra, Argonne National Laboratory.
  122. * Iain Duff, AERE Harwell.
  123. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  124. * Sven Hammarling, Numerical Algorithms Group Ltd.
  125. *
  126. *
  127. * .. External Functions ..
  128. LOGICAL LSAME
  129. EXTERNAL LSAME
  130. * .. External Subroutines ..
  131. EXTERNAL XERBLA
  132. * .. Intrinsic Functions ..
  133. INTRINSIC CONJG, MAX
  134. * .. Local Scalars ..
  135. LOGICAL LSIDE, NOCONJ, NOUNIT, UPPER
  136. INTEGER I, INFO, J, K, NROWA
  137. COMPLEX TEMP
  138. * .. Parameters ..
  139. COMPLEX ONE
  140. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  141. COMPLEX ZERO
  142. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  143. * ..
  144. * .. Executable Statements ..
  145. *
  146. * Test the input parameters.
  147. *
  148. LSIDE = LSAME( SIDE , 'L' )
  149. IF( LSIDE )THEN
  150. NROWA = M
  151. ELSE
  152. NROWA = N
  153. END IF
  154. NOCONJ = LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'T' )
  155. NOUNIT = LSAME( DIAG , 'N' )
  156. UPPER = LSAME( UPLO , 'U' )
  157. *
  158. INFO = 0
  159. IF( ( .NOT.LSIDE ).AND.
  160. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
  161. INFO = 1
  162. ELSE IF( ( .NOT.UPPER ).AND.
  163. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  164. INFO = 2
  165. ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
  166. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
  167. $ ( .NOT.LSAME( TRANSA, 'R' ) ).AND.
  168. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
  169. INFO = 3
  170. ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
  171. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
  172. INFO = 4
  173. ELSE IF( M .LT.0 )THEN
  174. INFO = 5
  175. ELSE IF( N .LT.0 )THEN
  176. INFO = 6
  177. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  178. INFO = 9
  179. ELSE IF( LDB.LT.MAX( 1, M ) )THEN
  180. INFO = 11
  181. END IF
  182. IF( INFO.NE.0 )THEN
  183. CALL XERBLA( 'CTRMM ', INFO )
  184. RETURN
  185. END IF
  186. *
  187. * Quick return if possible.
  188. *
  189. IF( N.EQ.0 )
  190. $ RETURN
  191. *
  192. * And when alpha.eq.zero.
  193. *
  194. IF( ALPHA.EQ.ZERO )THEN
  195. DO 20, J = 1, N
  196. DO 10, I = 1, M
  197. B( I, J ) = ZERO
  198. 10 CONTINUE
  199. 20 CONTINUE
  200. RETURN
  201. END IF
  202. *
  203. * Start the operations.
  204. *
  205. IF( LSIDE )THEN
  206. IF( LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'R' ))THEN
  207. *
  208. * Form B := alpha*A*B.
  209. *
  210. IF( UPPER )THEN
  211. DO 50, J = 1, N
  212. DO 40, K = 1, M
  213. IF( B( K, J ).NE.ZERO )THEN
  214. TEMP = ALPHA*B( K, J )
  215. IF (NOCONJ) THEN
  216. DO 30, I = 1, K - 1
  217. B( I, J ) = B( I, J ) + TEMP*A( I, K )
  218. 30 CONTINUE
  219. IF( NOUNIT )
  220. $ TEMP = TEMP*A( K, K )
  221. B( K, J ) = TEMP
  222. ELSE
  223. DO 35, I = 1, K - 1
  224. B( I, J ) = B( I, J ) + TEMP*CONJG(A( I, K ))
  225. 35 CONTINUE
  226. IF( NOUNIT )
  227. $ TEMP = TEMP*CONJG(A( K, K ))
  228. B( K, J ) = TEMP
  229. ENDIF
  230. END IF
  231. 40 CONTINUE
  232. 50 CONTINUE
  233. ELSE
  234. DO 80, J = 1, N
  235. DO 70 K = M, 1, -1
  236. IF( B( K, J ).NE.ZERO )THEN
  237. TEMP = ALPHA*B( K, J )
  238. B( K, J ) = TEMP
  239. IF (NOCONJ) THEN
  240. IF( NOUNIT )
  241. $ B( K, J ) = B( K, J )*A( K, K )
  242. DO 60, I = K + 1, M
  243. B( I, J ) = B( I, J ) + TEMP*A( I, K )
  244. 60 CONTINUE
  245. ELSE
  246. IF( NOUNIT )
  247. $ B( K, J ) = B( K, J )*CONJG(A( K, K ))
  248. DO 65, I = K + 1, M
  249. B( I, J ) = B( I, J ) + TEMP*CONJG(A( I, K ))
  250. 65 CONTINUE
  251. ENDIF
  252. END IF
  253. 70 CONTINUE
  254. 80 CONTINUE
  255. END IF
  256. ELSE
  257. *
  258. * Form B := alpha*A'*B or B := alpha*conjg( A' )*B.
  259. *
  260. IF( UPPER )THEN
  261. DO 120, J = 1, N
  262. DO 110, I = M, 1, -1
  263. TEMP = B( I, J )
  264. IF( NOCONJ )THEN
  265. IF( NOUNIT )
  266. $ TEMP = TEMP*A( I, I )
  267. DO 90, K = 1, I - 1
  268. TEMP = TEMP + A( K, I )*B( K, J )
  269. 90 CONTINUE
  270. ELSE
  271. IF( NOUNIT )
  272. $ TEMP = TEMP*CONJG( A( I, I ) )
  273. DO 100, K = 1, I - 1
  274. TEMP = TEMP + CONJG( A( K, I ) )*B( K, J )
  275. 100 CONTINUE
  276. END IF
  277. B( I, J ) = ALPHA*TEMP
  278. 110 CONTINUE
  279. 120 CONTINUE
  280. ELSE
  281. DO 160, J = 1, N
  282. DO 150, I = 1, M
  283. TEMP = B( I, J )
  284. IF( NOCONJ )THEN
  285. IF( NOUNIT )
  286. $ TEMP = TEMP*A( I, I )
  287. DO 130, K = I + 1, M
  288. TEMP = TEMP + A( K, I )*B( K, J )
  289. 130 CONTINUE
  290. ELSE
  291. IF( NOUNIT )
  292. $ TEMP = TEMP*CONJG( A( I, I ) )
  293. DO 140, K = I + 1, M
  294. TEMP = TEMP + CONJG( A( K, I ) )*B( K, J )
  295. 140 CONTINUE
  296. END IF
  297. B( I, J ) = ALPHA*TEMP
  298. 150 CONTINUE
  299. 160 CONTINUE
  300. END IF
  301. END IF
  302. ELSE
  303. IF( LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'R' ))THEN
  304. *
  305. * Form B := alpha*B*A.
  306. *
  307. IF( UPPER )THEN
  308. DO 200, J = N, 1, -1
  309. TEMP = ALPHA
  310. IF (NOCONJ) THEN
  311. IF( NOUNIT )
  312. $ TEMP = TEMP*A( J, J )
  313. ELSE
  314. IF( NOUNIT )
  315. $ TEMP = TEMP*CONJG(A( J, J ))
  316. ENDIF
  317. DO 170, I = 1, M
  318. B( I, J ) = TEMP*B( I, J )
  319. 170 CONTINUE
  320. DO 190, K = 1, J - 1
  321. IF( A( K, J ).NE.ZERO )THEN
  322. IF (NOCONJ) THEN
  323. TEMP = ALPHA*A( K, J )
  324. ELSE
  325. TEMP = ALPHA*CONJG(A( K, J ))
  326. ENDIF
  327. DO 180, I = 1, M
  328. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  329. 180 CONTINUE
  330. END IF
  331. 190 CONTINUE
  332. 200 CONTINUE
  333. ELSE
  334. DO 240, J = 1, N
  335. TEMP = ALPHA
  336. IF (NOCONJ) THEN
  337. IF( NOUNIT )
  338. $ TEMP = TEMP*A( J, J )
  339. ELSE
  340. IF( NOUNIT )
  341. $ TEMP = TEMP*CONJG(A( J, J ))
  342. ENDIF
  343. DO 210, I = 1, M
  344. B( I, J ) = TEMP*B( I, J )
  345. 210 CONTINUE
  346. DO 230, K = J + 1, N
  347. IF( A( K, J ).NE.ZERO )THEN
  348. IF (NOCONJ) THEN
  349. TEMP = ALPHA*A( K, J )
  350. ELSE
  351. TEMP = ALPHA*CONJG(A( K, J ))
  352. ENDIF
  353. DO 220, I = 1, M
  354. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  355. 220 CONTINUE
  356. END IF
  357. 230 CONTINUE
  358. 240 CONTINUE
  359. END IF
  360. ELSE
  361. *
  362. * Form B := alpha*B*A' or B := alpha*B*conjg( A' ).
  363. *
  364. IF( UPPER )THEN
  365. DO 280, K = 1, N
  366. DO 260, J = 1, K - 1
  367. IF( A( J, K ).NE.ZERO )THEN
  368. IF( NOCONJ )THEN
  369. TEMP = ALPHA*A( J, K )
  370. ELSE
  371. TEMP = ALPHA*CONJG( A( J, K ) )
  372. END IF
  373. DO 250, I = 1, M
  374. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  375. 250 CONTINUE
  376. END IF
  377. 260 CONTINUE
  378. TEMP = ALPHA
  379. IF( NOUNIT )THEN
  380. IF( NOCONJ )THEN
  381. TEMP = TEMP*A( K, K )
  382. ELSE
  383. TEMP = TEMP*CONJG( A( K, K ) )
  384. END IF
  385. END IF
  386. IF( TEMP.NE.ONE )THEN
  387. DO 270, I = 1, M
  388. B( I, K ) = TEMP*B( I, K )
  389. 270 CONTINUE
  390. END IF
  391. 280 CONTINUE
  392. ELSE
  393. DO 320, K = N, 1, -1
  394. DO 300, J = K + 1, N
  395. IF( A( J, K ).NE.ZERO )THEN
  396. IF( NOCONJ )THEN
  397. TEMP = ALPHA*A( J, K )
  398. ELSE
  399. TEMP = ALPHA*CONJG( A( J, K ) )
  400. END IF
  401. DO 290, I = 1, M
  402. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  403. 290 CONTINUE
  404. END IF
  405. 300 CONTINUE
  406. TEMP = ALPHA
  407. IF( NOUNIT )THEN
  408. IF( NOCONJ )THEN
  409. TEMP = TEMP*A( K, K )
  410. ELSE
  411. TEMP = TEMP*CONJG( A( K, K ) )
  412. END IF
  413. END IF
  414. IF( TEMP.NE.ONE )THEN
  415. DO 310, I = 1, M
  416. B( I, K ) = TEMP*B( I, K )
  417. 310 CONTINUE
  418. END IF
  419. 320 CONTINUE
  420. END IF
  421. END IF
  422. END IF
  423. *
  424. RETURN
  425. *
  426. * End of CTRMM .
  427. *
  428. END