You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpot03.f 6.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. *> \brief \b ZPOT03
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
  12. * RWORK, RCOND, RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER LDA, LDAINV, LDWORK, N
  17. * DOUBLE PRECISION RCOND, RESID
  18. * ..
  19. * .. Array Arguments ..
  20. * DOUBLE PRECISION RWORK( * )
  21. * COMPLEX*16 A( LDA, * ), AINV( LDAINV, * ),
  22. * $ WORK( LDWORK, * )
  23. * ..
  24. *
  25. *
  26. *> \par Purpose:
  27. * =============
  28. *>
  29. *> \verbatim
  30. *>
  31. *> ZPOT03 computes the residual for a Hermitian matrix times its
  32. *> inverse:
  33. *> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
  34. *> where EPS is the machine epsilon.
  35. *> \endverbatim
  36. *
  37. * Arguments:
  38. * ==========
  39. *
  40. *> \param[in] UPLO
  41. *> \verbatim
  42. *> UPLO is CHARACTER*1
  43. *> Specifies whether the upper or lower triangular part of the
  44. *> Hermitian matrix A is stored:
  45. *> = 'U': Upper triangular
  46. *> = 'L': Lower triangular
  47. *> \endverbatim
  48. *>
  49. *> \param[in] N
  50. *> \verbatim
  51. *> N is INTEGER
  52. *> The number of rows and columns of the matrix A. N >= 0.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] A
  56. *> \verbatim
  57. *> A is COMPLEX*16 array, dimension (LDA,N)
  58. *> The original Hermitian matrix A.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] LDA
  62. *> \verbatim
  63. *> LDA is INTEGER
  64. *> The leading dimension of the array A. LDA >= max(1,N)
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] AINV
  68. *> \verbatim
  69. *> AINV is COMPLEX*16 array, dimension (LDAINV,N)
  70. *> On entry, the inverse of the matrix A, stored as a Hermitian
  71. *> matrix in the same format as A.
  72. *> In this version, AINV is expanded into a full matrix and
  73. *> multiplied by A, so the opposing triangle of AINV will be
  74. *> changed; i.e., if the upper triangular part of AINV is
  75. *> stored, the lower triangular part will be used as work space.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] LDAINV
  79. *> \verbatim
  80. *> LDAINV is INTEGER
  81. *> The leading dimension of the array AINV. LDAINV >= max(1,N).
  82. *> \endverbatim
  83. *>
  84. *> \param[out] WORK
  85. *> \verbatim
  86. *> WORK is COMPLEX*16 array, dimension (LDWORK,N)
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDWORK
  90. *> \verbatim
  91. *> LDWORK is INTEGER
  92. *> The leading dimension of the array WORK. LDWORK >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[out] RWORK
  96. *> \verbatim
  97. *> RWORK is DOUBLE PRECISION array, dimension (N)
  98. *> \endverbatim
  99. *>
  100. *> \param[out] RCOND
  101. *> \verbatim
  102. *> RCOND is DOUBLE PRECISION
  103. *> The reciprocal of the condition number of A, computed as
  104. *> ( 1/norm(A) ) / norm(AINV).
  105. *> \endverbatim
  106. *>
  107. *> \param[out] RESID
  108. *> \verbatim
  109. *> RESID is DOUBLE PRECISION
  110. *> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
  111. *> \endverbatim
  112. *
  113. * Authors:
  114. * ========
  115. *
  116. *> \author Univ. of Tennessee
  117. *> \author Univ. of California Berkeley
  118. *> \author Univ. of Colorado Denver
  119. *> \author NAG Ltd.
  120. *
  121. *> \ingroup complex16_lin
  122. *
  123. * =====================================================================
  124. SUBROUTINE ZPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
  125. $ RWORK, RCOND, RESID )
  126. *
  127. * -- LAPACK test routine --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. *
  131. * .. Scalar Arguments ..
  132. CHARACTER UPLO
  133. INTEGER LDA, LDAINV, LDWORK, N
  134. DOUBLE PRECISION RCOND, RESID
  135. * ..
  136. * .. Array Arguments ..
  137. DOUBLE PRECISION RWORK( * )
  138. COMPLEX*16 A( LDA, * ), AINV( LDAINV, * ),
  139. $ WORK( LDWORK, * )
  140. * ..
  141. *
  142. * =====================================================================
  143. *
  144. * .. Parameters ..
  145. DOUBLE PRECISION ZERO, ONE
  146. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  147. COMPLEX*16 CZERO, CONE
  148. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  149. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  150. * ..
  151. * .. Local Scalars ..
  152. INTEGER I, J
  153. DOUBLE PRECISION AINVNM, ANORM, EPS
  154. * ..
  155. * .. External Functions ..
  156. LOGICAL LSAME
  157. DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
  158. EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHE
  159. * ..
  160. * .. External Subroutines ..
  161. EXTERNAL ZHEMM
  162. * ..
  163. * .. Intrinsic Functions ..
  164. INTRINSIC DBLE, DCONJG
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. * Quick exit if N = 0.
  169. *
  170. IF( N.LE.0 ) THEN
  171. RCOND = ONE
  172. RESID = ZERO
  173. RETURN
  174. END IF
  175. *
  176. * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
  177. *
  178. EPS = DLAMCH( 'Epsilon' )
  179. ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
  180. AINVNM = ZLANHE( '1', UPLO, N, AINV, LDAINV, RWORK )
  181. IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  182. RCOND = ZERO
  183. RESID = ONE / EPS
  184. RETURN
  185. END IF
  186. RCOND = ( ONE / ANORM ) / AINVNM
  187. *
  188. * Expand AINV into a full matrix and call ZHEMM to multiply
  189. * AINV on the left by A.
  190. *
  191. IF( LSAME( UPLO, 'U' ) ) THEN
  192. DO 20 J = 1, N
  193. DO 10 I = 1, J - 1
  194. AINV( J, I ) = DCONJG( AINV( I, J ) )
  195. 10 CONTINUE
  196. 20 CONTINUE
  197. ELSE
  198. DO 40 J = 1, N
  199. DO 30 I = J + 1, N
  200. AINV( J, I ) = DCONJG( AINV( I, J ) )
  201. 30 CONTINUE
  202. 40 CONTINUE
  203. END IF
  204. CALL ZHEMM( 'Left', UPLO, N, N, -CONE, A, LDA, AINV, LDAINV,
  205. $ CZERO, WORK, LDWORK )
  206. *
  207. * Add the identity matrix to WORK .
  208. *
  209. DO 50 I = 1, N
  210. WORK( I, I ) = WORK( I, I ) + CONE
  211. 50 CONTINUE
  212. *
  213. * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
  214. *
  215. RESID = ZLANGE( '1', N, N, WORK, LDWORK, RWORK )
  216. *
  217. RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
  218. *
  219. RETURN
  220. *
  221. * End of ZPOT03
  222. *
  223. END