You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgbt01.f 6.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. *> \brief \b ZGBT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
  12. * RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER KL, KU, LDA, LDAFAC, M, N
  16. * DOUBLE PRECISION RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> ZGBT01 reconstructs a band matrix A from its L*U factorization and
  30. *> computes the residual:
  31. *> norm(L*U - A) / ( N * norm(A) * EPS ),
  32. *> where EPS is the machine epsilon.
  33. *>
  34. *> The expression L*U - A is computed one column at a time, so A and
  35. *> AFAC are not modified.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] M
  42. *> \verbatim
  43. *> M is INTEGER
  44. *> The number of rows of the matrix A. M >= 0.
  45. *> \endverbatim
  46. *>
  47. *> \param[in] N
  48. *> \verbatim
  49. *> N is INTEGER
  50. *> The number of columns of the matrix A. N >= 0.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] KL
  54. *> \verbatim
  55. *> KL is INTEGER
  56. *> The number of subdiagonals within the band of A. KL >= 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] KU
  60. *> \verbatim
  61. *> KU is INTEGER
  62. *> The number of superdiagonals within the band of A. KU >= 0.
  63. *> \endverbatim
  64. *>
  65. *> \param[in,out] A
  66. *> \verbatim
  67. *> A is COMPLEX*16 array, dimension (LDA,N)
  68. *> The original matrix A in band storage, stored in rows 1 to
  69. *> KL+KU+1.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] LDA
  73. *> \verbatim
  74. *> LDA is INTEGER.
  75. *> The leading dimension of the array A. LDA >= max(1,KL+KU+1).
  76. *> \endverbatim
  77. *>
  78. *> \param[in] AFAC
  79. *> \verbatim
  80. *> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
  81. *> The factored form of the matrix A. AFAC contains the banded
  82. *> factors L and U from the L*U factorization, as computed by
  83. *> ZGBTRF. U is stored as an upper triangular band matrix with
  84. *> KL+KU superdiagonals in rows 1 to KL+KU+1, and the
  85. *> multipliers used during the factorization are stored in rows
  86. *> KL+KU+2 to 2*KL+KU+1. See ZGBTRF for further details.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDAFAC
  90. *> \verbatim
  91. *> LDAFAC is INTEGER
  92. *> The leading dimension of the array AFAC.
  93. *> LDAFAC >= max(1,2*KL*KU+1).
  94. *> \endverbatim
  95. *>
  96. *> \param[in] IPIV
  97. *> \verbatim
  98. *> IPIV is INTEGER array, dimension (min(M,N))
  99. *> The pivot indices from ZGBTRF.
  100. *> \endverbatim
  101. *>
  102. *> \param[out] WORK
  103. *> \verbatim
  104. *> WORK is COMPLEX*16 array, dimension (2*KL+KU+1)
  105. *> \endverbatim
  106. *>
  107. *> \param[out] RESID
  108. *> \verbatim
  109. *> RESID is DOUBLE PRECISION
  110. *> norm(L*U - A) / ( N * norm(A) * EPS )
  111. *> \endverbatim
  112. *
  113. * Authors:
  114. * ========
  115. *
  116. *> \author Univ. of Tennessee
  117. *> \author Univ. of California Berkeley
  118. *> \author Univ. of Colorado Denver
  119. *> \author NAG Ltd.
  120. *
  121. *> \ingroup complex16_lin
  122. *
  123. * =====================================================================
  124. SUBROUTINE ZGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
  125. $ RESID )
  126. *
  127. * -- LAPACK test routine --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. *
  131. * .. Scalar Arguments ..
  132. INTEGER KL, KU, LDA, LDAFAC, M, N
  133. DOUBLE PRECISION RESID
  134. * ..
  135. * .. Array Arguments ..
  136. INTEGER IPIV( * )
  137. COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
  138. * ..
  139. *
  140. * =====================================================================
  141. *
  142. * .. Parameters ..
  143. DOUBLE PRECISION ZERO, ONE
  144. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  145. * ..
  146. * .. Local Scalars ..
  147. INTEGER I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
  148. DOUBLE PRECISION ANORM, EPS
  149. COMPLEX*16 T
  150. * ..
  151. * .. External Functions ..
  152. DOUBLE PRECISION DLAMCH, DZASUM
  153. EXTERNAL DLAMCH, DZASUM
  154. * ..
  155. * .. External Subroutines ..
  156. EXTERNAL ZAXPY, ZCOPY
  157. * ..
  158. * .. Intrinsic Functions ..
  159. INTRINSIC DBLE, DCMPLX, MAX, MIN
  160. * ..
  161. * .. Executable Statements ..
  162. *
  163. * Quick exit if M = 0 or N = 0.
  164. *
  165. RESID = ZERO
  166. IF( M.LE.0 .OR. N.LE.0 )
  167. $ RETURN
  168. *
  169. * Determine EPS and the norm of A.
  170. *
  171. EPS = DLAMCH( 'Epsilon' )
  172. KD = KU + 1
  173. ANORM = ZERO
  174. DO 10 J = 1, N
  175. I1 = MAX( KD+1-J, 1 )
  176. I2 = MIN( KD+M-J, KL+KD )
  177. IF( I2.GE.I1 )
  178. $ ANORM = MAX( ANORM, DZASUM( I2-I1+1, A( I1, J ), 1 ) )
  179. 10 CONTINUE
  180. *
  181. * Compute one column at a time of L*U - A.
  182. *
  183. KD = KL + KU + 1
  184. DO 40 J = 1, N
  185. *
  186. * Copy the J-th column of U to WORK.
  187. *
  188. JU = MIN( KL+KU, J-1 )
  189. JL = MIN( KL, M-J )
  190. LENJ = MIN( M, J ) - J + JU + 1
  191. IF( LENJ.GT.0 ) THEN
  192. CALL ZCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
  193. DO 20 I = LENJ + 1, JU + JL + 1
  194. WORK( I ) = ZERO
  195. 20 CONTINUE
  196. *
  197. * Multiply by the unit lower triangular matrix L. Note that L
  198. * is stored as a product of transformations and permutations.
  199. *
  200. DO 30 I = MIN( M-1, J ), J - JU, -1
  201. IL = MIN( KL, M-I )
  202. IF( IL.GT.0 ) THEN
  203. IW = I - J + JU + 1
  204. T = WORK( IW )
  205. CALL ZAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
  206. $ 1 )
  207. IP = IPIV( I )
  208. IF( I.NE.IP ) THEN
  209. IP = IP - J + JU + 1
  210. WORK( IW ) = WORK( IP )
  211. WORK( IP ) = T
  212. END IF
  213. END IF
  214. 30 CONTINUE
  215. *
  216. * Subtract the corresponding column of A.
  217. *
  218. JUA = MIN( JU, KU )
  219. IF( JUA+JL+1.GT.0 )
  220. $ CALL ZAXPY( JUA+JL+1, -DCMPLX( ONE ), A( KU+1-JUA, J ),
  221. $ 1, WORK( JU+1-JUA ), 1 )
  222. *
  223. * Compute the 1-norm of the column.
  224. *
  225. RESID = MAX( RESID, DZASUM( JU+JL+1, WORK, 1 ) )
  226. END IF
  227. 40 CONTINUE
  228. *
  229. * Compute norm( L*U - A ) / ( N * norm(A) * EPS )
  230. *
  231. IF( ANORM.LE.ZERO ) THEN
  232. IF( RESID.NE.ZERO )
  233. $ RESID = ONE / EPS
  234. ELSE
  235. RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
  236. END IF
  237. *
  238. RETURN
  239. *
  240. * End of ZGBT01
  241. *
  242. END