You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dget03.f 4.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. *> \brief \b DGET03
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
  12. * RCOND, RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LDAINV, LDWORK, N
  16. * DOUBLE PRECISION RCOND, RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
  20. * $ WORK( LDWORK, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> DGET03 computes the residual for a general matrix times its inverse:
  30. *> norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ),
  31. *> where EPS is the machine epsilon.
  32. *> \endverbatim
  33. *
  34. * Arguments:
  35. * ==========
  36. *
  37. *> \param[in] N
  38. *> \verbatim
  39. *> N is INTEGER
  40. *> The number of rows and columns of the matrix A. N >= 0.
  41. *> \endverbatim
  42. *>
  43. *> \param[in] A
  44. *> \verbatim
  45. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  46. *> The original N x N matrix A.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] LDA
  50. *> \verbatim
  51. *> LDA is INTEGER
  52. *> The leading dimension of the array A. LDA >= max(1,N).
  53. *> \endverbatim
  54. *>
  55. *> \param[in] AINV
  56. *> \verbatim
  57. *> AINV is DOUBLE PRECISION array, dimension (LDAINV,N)
  58. *> The inverse of the matrix A.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] LDAINV
  62. *> \verbatim
  63. *> LDAINV is INTEGER
  64. *> The leading dimension of the array AINV. LDAINV >= max(1,N).
  65. *> \endverbatim
  66. *>
  67. *> \param[out] WORK
  68. *> \verbatim
  69. *> WORK is DOUBLE PRECISION array, dimension (LDWORK,N)
  70. *> \endverbatim
  71. *>
  72. *> \param[in] LDWORK
  73. *> \verbatim
  74. *> LDWORK is INTEGER
  75. *> The leading dimension of the array WORK. LDWORK >= max(1,N).
  76. *> \endverbatim
  77. *>
  78. *> \param[out] RWORK
  79. *> \verbatim
  80. *> RWORK is DOUBLE PRECISION array, dimension (N)
  81. *> \endverbatim
  82. *>
  83. *> \param[out] RCOND
  84. *> \verbatim
  85. *> RCOND is DOUBLE PRECISION
  86. *> The reciprocal of the condition number of A, computed as
  87. *> ( 1/norm(A) ) / norm(AINV).
  88. *> \endverbatim
  89. *>
  90. *> \param[out] RESID
  91. *> \verbatim
  92. *> RESID is DOUBLE PRECISION
  93. *> norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS )
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \ingroup double_lin
  105. *
  106. * =====================================================================
  107. SUBROUTINE DGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
  108. $ RCOND, RESID )
  109. *
  110. * -- LAPACK test routine --
  111. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  112. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  113. *
  114. * .. Scalar Arguments ..
  115. INTEGER LDA, LDAINV, LDWORK, N
  116. DOUBLE PRECISION RCOND, RESID
  117. * ..
  118. * .. Array Arguments ..
  119. DOUBLE PRECISION A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
  120. $ WORK( LDWORK, * )
  121. * ..
  122. *
  123. * =====================================================================
  124. *
  125. * .. Parameters ..
  126. DOUBLE PRECISION ZERO, ONE
  127. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  128. * ..
  129. * .. Local Scalars ..
  130. INTEGER I
  131. DOUBLE PRECISION AINVNM, ANORM, EPS
  132. * ..
  133. * .. External Functions ..
  134. DOUBLE PRECISION DLAMCH, DLANGE
  135. EXTERNAL DLAMCH, DLANGE
  136. * ..
  137. * .. External Subroutines ..
  138. EXTERNAL DGEMM
  139. * ..
  140. * .. Intrinsic Functions ..
  141. INTRINSIC DBLE
  142. * ..
  143. * .. Executable Statements ..
  144. *
  145. * Quick exit if N = 0.
  146. *
  147. IF( N.LE.0 ) THEN
  148. RCOND = ONE
  149. RESID = ZERO
  150. RETURN
  151. END IF
  152. *
  153. * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
  154. *
  155. EPS = DLAMCH( 'Epsilon' )
  156. ANORM = DLANGE( '1', N, N, A, LDA, RWORK )
  157. AINVNM = DLANGE( '1', N, N, AINV, LDAINV, RWORK )
  158. IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  159. RCOND = ZERO
  160. RESID = ONE / EPS
  161. RETURN
  162. END IF
  163. RCOND = ( ONE / ANORM ) / AINVNM
  164. *
  165. * Compute I - A * AINV
  166. *
  167. CALL DGEMM( 'No transpose', 'No transpose', N, N, N, -ONE, AINV,
  168. $ LDAINV, A, LDA, ZERO, WORK, LDWORK )
  169. DO 10 I = 1, N
  170. WORK( I, I ) = ONE + WORK( I, I )
  171. 10 CONTINUE
  172. *
  173. * Compute norm(I - AINV*A) / (N * norm(A) * norm(AINV) * EPS)
  174. *
  175. RESID = DLANGE( '1', N, N, WORK, LDWORK, RWORK )
  176. *
  177. RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
  178. *
  179. RETURN
  180. *
  181. * End of DGET03
  182. *
  183. END