|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318 |
- *> \brief \b CQRT15
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
- * RANK, NORMA, NORMB, ISEED, WORK, LWORK )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
- * REAL NORMA, NORMB
- * ..
- * .. Array Arguments ..
- * INTEGER ISEED( 4 )
- * REAL S( * )
- * COMPLEX A( LDA, * ), B( LDB, * ), WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CQRT15 generates a matrix with full or deficient rank and of various
- *> norms.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SCALE
- *> \verbatim
- *> SCALE is INTEGER
- *> SCALE = 1: normally scaled matrix
- *> SCALE = 2: matrix scaled up
- *> SCALE = 3: matrix scaled down
- *> \endverbatim
- *>
- *> \param[in] RKSEL
- *> \verbatim
- *> RKSEL is INTEGER
- *> RKSEL = 1: full rank matrix
- *> RKSEL = 2: rank-deficient matrix
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of A.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of columns of B.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The M-by-N matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A.
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB, NRHS)
- *> A matrix that is in the range space of matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL array, dimension MIN(M,N)
- *> Singular values of A.
- *> \endverbatim
- *>
- *> \param[out] RANK
- *> \verbatim
- *> RANK is INTEGER
- *> number of nonzero singular values of A.
- *> \endverbatim
- *>
- *> \param[out] NORMA
- *> \verbatim
- *> NORMA is REAL
- *> one-norm norm of A.
- *> \endverbatim
- *>
- *> \param[out] NORMB
- *> \verbatim
- *> NORMB is REAL
- *> one-norm norm of B.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is integer array, dimension (4)
- *> seed for random number generator.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> length of work space required.
- *> LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
- $ RANK, NORMA, NORMB, ISEED, WORK, LWORK )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
- REAL NORMA, NORMB
- * ..
- * .. Array Arguments ..
- INTEGER ISEED( 4 )
- REAL S( * )
- COMPLEX A( LDA, * ), B( LDB, * ), WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO, SVMIN
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
- $ SVMIN = 0.1E+0 )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
- $ CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER INFO, J, MN
- REAL BIGNUM, EPS, SMLNUM, TEMP
- * ..
- * .. Local Arrays ..
- REAL DUMMY( 1 )
- * ..
- * .. External Functions ..
- REAL CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
- EXTERNAL CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMM, CLARF, CLARNV, CLAROR, CLASCL, CLASET,
- $ CSSCAL, SLABAD, SLAORD, SLASCL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, CMPLX, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- MN = MIN( M, N )
- IF( LWORK.LT.MAX( M+MN, MN*NRHS, 2*N+M ) ) THEN
- CALL XERBLA( 'CQRT15', 16 )
- RETURN
- END IF
- *
- SMLNUM = SLAMCH( 'Safe minimum' )
- BIGNUM = ONE / SMLNUM
- CALL SLABAD( SMLNUM, BIGNUM )
- EPS = SLAMCH( 'Epsilon' )
- SMLNUM = ( SMLNUM / EPS ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Determine rank and (unscaled) singular values
- *
- IF( RKSEL.EQ.1 ) THEN
- RANK = MN
- ELSE IF( RKSEL.EQ.2 ) THEN
- RANK = ( 3*MN ) / 4
- DO 10 J = RANK + 1, MN
- S( J ) = ZERO
- 10 CONTINUE
- ELSE
- CALL XERBLA( 'CQRT15', 2 )
- END IF
- *
- IF( RANK.GT.0 ) THEN
- *
- * Nontrivial case
- *
- S( 1 ) = ONE
- DO 30 J = 2, RANK
- 20 CONTINUE
- TEMP = SLARND( 1, ISEED )
- IF( TEMP.GT.SVMIN ) THEN
- S( J ) = ABS( TEMP )
- ELSE
- GO TO 20
- END IF
- 30 CONTINUE
- CALL SLAORD( 'Decreasing', RANK, S, 1 )
- *
- * Generate 'rank' columns of a random orthogonal matrix in A
- *
- CALL CLARNV( 2, ISEED, M, WORK )
- CALL CSSCAL( M, ONE / SCNRM2( M, WORK, 1 ), WORK, 1 )
- CALL CLASET( 'Full', M, RANK, CZERO, CONE, A, LDA )
- CALL CLARF( 'Left', M, RANK, WORK, 1, CMPLX( TWO ), A, LDA,
- $ WORK( M+1 ) )
- *
- * workspace used: m+mn
- *
- * Generate consistent rhs in the range space of A
- *
- CALL CLARNV( 2, ISEED, RANK*NRHS, WORK )
- CALL CGEMM( 'No transpose', 'No transpose', M, NRHS, RANK,
- $ CONE, A, LDA, WORK, RANK, CZERO, B, LDB )
- *
- * work space used: <= mn *nrhs
- *
- * generate (unscaled) matrix A
- *
- DO 40 J = 1, RANK
- CALL CSSCAL( M, S( J ), A( 1, J ), 1 )
- 40 CONTINUE
- IF( RANK.LT.N )
- $ CALL CLASET( 'Full', M, N-RANK, CZERO, CZERO,
- $ A( 1, RANK+1 ), LDA )
- CALL CLAROR( 'Right', 'No initialization', M, N, A, LDA, ISEED,
- $ WORK, INFO )
- *
- ELSE
- *
- * work space used 2*n+m
- *
- * Generate null matrix and rhs
- *
- DO 50 J = 1, MN
- S( J ) = ZERO
- 50 CONTINUE
- CALL CLASET( 'Full', M, N, CZERO, CZERO, A, LDA )
- CALL CLASET( 'Full', M, NRHS, CZERO, CZERO, B, LDB )
- *
- END IF
- *
- * Scale the matrix
- *
- IF( SCALE.NE.1 ) THEN
- NORMA = CLANGE( 'Max', M, N, A, LDA, DUMMY )
- IF( NORMA.NE.ZERO ) THEN
- IF( SCALE.EQ.2 ) THEN
- *
- * matrix scaled up
- *
- CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A,
- $ LDA, INFO )
- CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, MN, 1, S,
- $ MN, INFO )
- CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, NRHS, B,
- $ LDB, INFO )
- ELSE IF( SCALE.EQ.3 ) THEN
- *
- * matrix scaled down
- *
- CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A,
- $ LDA, INFO )
- CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, MN, 1, S,
- $ MN, INFO )
- CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, NRHS, B,
- $ LDB, INFO )
- ELSE
- CALL XERBLA( 'CQRT15', 1 )
- RETURN
- END IF
- END IF
- END IF
- *
- NORMA = SASUM( MN, S, 1 )
- NORMB = CLANGE( 'One-norm', M, NRHS, B, LDB, DUMMY )
- *
- RETURN
- *
- * End of CQRT15
- *
- END
|