You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cqrt15.f 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. *> \brief \b CQRT15
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
  12. * RANK, NORMA, NORMB, ISEED, WORK, LWORK )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
  16. * REAL NORMA, NORMB
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER ISEED( 4 )
  20. * REAL S( * )
  21. * COMPLEX A( LDA, * ), B( LDB, * ), WORK( LWORK )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> CQRT15 generates a matrix with full or deficient rank and of various
  31. *> norms.
  32. *> \endverbatim
  33. *
  34. * Arguments:
  35. * ==========
  36. *
  37. *> \param[in] SCALE
  38. *> \verbatim
  39. *> SCALE is INTEGER
  40. *> SCALE = 1: normally scaled matrix
  41. *> SCALE = 2: matrix scaled up
  42. *> SCALE = 3: matrix scaled down
  43. *> \endverbatim
  44. *>
  45. *> \param[in] RKSEL
  46. *> \verbatim
  47. *> RKSEL is INTEGER
  48. *> RKSEL = 1: full rank matrix
  49. *> RKSEL = 2: rank-deficient matrix
  50. *> \endverbatim
  51. *>
  52. *> \param[in] M
  53. *> \verbatim
  54. *> M is INTEGER
  55. *> The number of rows of the matrix A.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The number of columns of A.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] NRHS
  65. *> \verbatim
  66. *> NRHS is INTEGER
  67. *> The number of columns of B.
  68. *> \endverbatim
  69. *>
  70. *> \param[out] A
  71. *> \verbatim
  72. *> A is COMPLEX array, dimension (LDA,N)
  73. *> The M-by-N matrix A.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The leading dimension of the array A.
  80. *> \endverbatim
  81. *>
  82. *> \param[out] B
  83. *> \verbatim
  84. *> B is COMPLEX array, dimension (LDB, NRHS)
  85. *> A matrix that is in the range space of matrix A.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] LDB
  89. *> \verbatim
  90. *> LDB is INTEGER
  91. *> The leading dimension of the array B.
  92. *> \endverbatim
  93. *>
  94. *> \param[out] S
  95. *> \verbatim
  96. *> S is REAL array, dimension MIN(M,N)
  97. *> Singular values of A.
  98. *> \endverbatim
  99. *>
  100. *> \param[out] RANK
  101. *> \verbatim
  102. *> RANK is INTEGER
  103. *> number of nonzero singular values of A.
  104. *> \endverbatim
  105. *>
  106. *> \param[out] NORMA
  107. *> \verbatim
  108. *> NORMA is REAL
  109. *> one-norm norm of A.
  110. *> \endverbatim
  111. *>
  112. *> \param[out] NORMB
  113. *> \verbatim
  114. *> NORMB is REAL
  115. *> one-norm norm of B.
  116. *> \endverbatim
  117. *>
  118. *> \param[in,out] ISEED
  119. *> \verbatim
  120. *> ISEED is integer array, dimension (4)
  121. *> seed for random number generator.
  122. *> \endverbatim
  123. *>
  124. *> \param[out] WORK
  125. *> \verbatim
  126. *> WORK is COMPLEX array, dimension (LWORK)
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LWORK
  130. *> \verbatim
  131. *> LWORK is INTEGER
  132. *> length of work space required.
  133. *> LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
  134. *> \endverbatim
  135. *
  136. * Authors:
  137. * ========
  138. *
  139. *> \author Univ. of Tennessee
  140. *> \author Univ. of California Berkeley
  141. *> \author Univ. of Colorado Denver
  142. *> \author NAG Ltd.
  143. *
  144. *> \ingroup complex_lin
  145. *
  146. * =====================================================================
  147. SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
  148. $ RANK, NORMA, NORMB, ISEED, WORK, LWORK )
  149. *
  150. * -- LAPACK test routine --
  151. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  152. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  153. *
  154. * .. Scalar Arguments ..
  155. INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
  156. REAL NORMA, NORMB
  157. * ..
  158. * .. Array Arguments ..
  159. INTEGER ISEED( 4 )
  160. REAL S( * )
  161. COMPLEX A( LDA, * ), B( LDB, * ), WORK( LWORK )
  162. * ..
  163. *
  164. * =====================================================================
  165. *
  166. * .. Parameters ..
  167. REAL ZERO, ONE, TWO, SVMIN
  168. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
  169. $ SVMIN = 0.1E+0 )
  170. COMPLEX CZERO, CONE
  171. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  172. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  173. * ..
  174. * .. Local Scalars ..
  175. INTEGER INFO, J, MN
  176. REAL BIGNUM, EPS, SMLNUM, TEMP
  177. * ..
  178. * .. Local Arrays ..
  179. REAL DUMMY( 1 )
  180. * ..
  181. * .. External Functions ..
  182. REAL CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
  183. EXTERNAL CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
  184. * ..
  185. * .. External Subroutines ..
  186. EXTERNAL CGEMM, CLARF, CLARNV, CLAROR, CLASCL, CLASET,
  187. $ CSSCAL, SLABAD, SLAORD, SLASCL, XERBLA
  188. * ..
  189. * .. Intrinsic Functions ..
  190. INTRINSIC ABS, CMPLX, MAX, MIN
  191. * ..
  192. * .. Executable Statements ..
  193. *
  194. MN = MIN( M, N )
  195. IF( LWORK.LT.MAX( M+MN, MN*NRHS, 2*N+M ) ) THEN
  196. CALL XERBLA( 'CQRT15', 16 )
  197. RETURN
  198. END IF
  199. *
  200. SMLNUM = SLAMCH( 'Safe minimum' )
  201. BIGNUM = ONE / SMLNUM
  202. CALL SLABAD( SMLNUM, BIGNUM )
  203. EPS = SLAMCH( 'Epsilon' )
  204. SMLNUM = ( SMLNUM / EPS ) / EPS
  205. BIGNUM = ONE / SMLNUM
  206. *
  207. * Determine rank and (unscaled) singular values
  208. *
  209. IF( RKSEL.EQ.1 ) THEN
  210. RANK = MN
  211. ELSE IF( RKSEL.EQ.2 ) THEN
  212. RANK = ( 3*MN ) / 4
  213. DO 10 J = RANK + 1, MN
  214. S( J ) = ZERO
  215. 10 CONTINUE
  216. ELSE
  217. CALL XERBLA( 'CQRT15', 2 )
  218. END IF
  219. *
  220. IF( RANK.GT.0 ) THEN
  221. *
  222. * Nontrivial case
  223. *
  224. S( 1 ) = ONE
  225. DO 30 J = 2, RANK
  226. 20 CONTINUE
  227. TEMP = SLARND( 1, ISEED )
  228. IF( TEMP.GT.SVMIN ) THEN
  229. S( J ) = ABS( TEMP )
  230. ELSE
  231. GO TO 20
  232. END IF
  233. 30 CONTINUE
  234. CALL SLAORD( 'Decreasing', RANK, S, 1 )
  235. *
  236. * Generate 'rank' columns of a random orthogonal matrix in A
  237. *
  238. CALL CLARNV( 2, ISEED, M, WORK )
  239. CALL CSSCAL( M, ONE / SCNRM2( M, WORK, 1 ), WORK, 1 )
  240. CALL CLASET( 'Full', M, RANK, CZERO, CONE, A, LDA )
  241. CALL CLARF( 'Left', M, RANK, WORK, 1, CMPLX( TWO ), A, LDA,
  242. $ WORK( M+1 ) )
  243. *
  244. * workspace used: m+mn
  245. *
  246. * Generate consistent rhs in the range space of A
  247. *
  248. CALL CLARNV( 2, ISEED, RANK*NRHS, WORK )
  249. CALL CGEMM( 'No transpose', 'No transpose', M, NRHS, RANK,
  250. $ CONE, A, LDA, WORK, RANK, CZERO, B, LDB )
  251. *
  252. * work space used: <= mn *nrhs
  253. *
  254. * generate (unscaled) matrix A
  255. *
  256. DO 40 J = 1, RANK
  257. CALL CSSCAL( M, S( J ), A( 1, J ), 1 )
  258. 40 CONTINUE
  259. IF( RANK.LT.N )
  260. $ CALL CLASET( 'Full', M, N-RANK, CZERO, CZERO,
  261. $ A( 1, RANK+1 ), LDA )
  262. CALL CLAROR( 'Right', 'No initialization', M, N, A, LDA, ISEED,
  263. $ WORK, INFO )
  264. *
  265. ELSE
  266. *
  267. * work space used 2*n+m
  268. *
  269. * Generate null matrix and rhs
  270. *
  271. DO 50 J = 1, MN
  272. S( J ) = ZERO
  273. 50 CONTINUE
  274. CALL CLASET( 'Full', M, N, CZERO, CZERO, A, LDA )
  275. CALL CLASET( 'Full', M, NRHS, CZERO, CZERO, B, LDB )
  276. *
  277. END IF
  278. *
  279. * Scale the matrix
  280. *
  281. IF( SCALE.NE.1 ) THEN
  282. NORMA = CLANGE( 'Max', M, N, A, LDA, DUMMY )
  283. IF( NORMA.NE.ZERO ) THEN
  284. IF( SCALE.EQ.2 ) THEN
  285. *
  286. * matrix scaled up
  287. *
  288. CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A,
  289. $ LDA, INFO )
  290. CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, MN, 1, S,
  291. $ MN, INFO )
  292. CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, NRHS, B,
  293. $ LDB, INFO )
  294. ELSE IF( SCALE.EQ.3 ) THEN
  295. *
  296. * matrix scaled down
  297. *
  298. CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A,
  299. $ LDA, INFO )
  300. CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, MN, 1, S,
  301. $ MN, INFO )
  302. CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, NRHS, B,
  303. $ LDB, INFO )
  304. ELSE
  305. CALL XERBLA( 'CQRT15', 1 )
  306. RETURN
  307. END IF
  308. END IF
  309. END IF
  310. *
  311. NORMA = SASUM( MN, S, 1 )
  312. NORMB = CLANGE( 'One-norm', M, NRHS, B, LDB, DUMMY )
  313. *
  314. RETURN
  315. *
  316. * End of CQRT15
  317. *
  318. END