|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556 |
- *> \brief \b CLAVHP
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLAVHP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, TRANS, UPLO
- * INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX A( * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLAVHP performs one of the matrix-vector operations
- *> x := A*x or x := A^H*x,
- *> where x is an N element vector and A is one of the factors
- *> from the symmetric factorization computed by CHPTRF.
- *> CHPTRF produces a factorization of the form
- *> U * D * U^H or L * D * L^H,
- *> where U (or L) is a product of permutation and unit upper (lower)
- *> triangular matrices, U^H (or L^H) is the conjugate transpose of
- *> U (or L), and D is Hermitian and block diagonal with 1 x 1 and
- *> 2 x 2 diagonal blocks. The multipliers for the transformations
- *> and the upper or lower triangular parts of the diagonal blocks
- *> are stored columnwise in packed format in the linear array A.
- *>
- *> If TRANS = 'N' or 'n', CLAVHP multiplies either by U or U * D
- *> (or L or L * D).
- *> If TRANS = 'C' or 'c', CLAVHP multiplies either by U^H or D * U^H
- *> (or L^H or D * L^H ).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \verbatim
- *> UPLO - CHARACTER*1
- *> On entry, UPLO specifies whether the triangular matrix
- *> stored in A is upper or lower triangular.
- *> UPLO = 'U' or 'u' The matrix is upper triangular.
- *> UPLO = 'L' or 'l' The matrix is lower triangular.
- *> Unchanged on exit.
- *>
- *> TRANS - CHARACTER*1
- *> On entry, TRANS specifies the operation to be performed as
- *> follows:
- *> TRANS = 'N' or 'n' x := A*x.
- *> TRANS = 'C' or 'c' x := A^H*x.
- *> Unchanged on exit.
- *>
- *> DIAG - CHARACTER*1
- *> On entry, DIAG specifies whether the diagonal blocks are
- *> assumed to be unit matrices, as follows:
- *> DIAG = 'U' or 'u' Diagonal blocks are unit matrices.
- *> DIAG = 'N' or 'n' Diagonal blocks are non-unit.
- *> Unchanged on exit.
- *>
- *> N - INTEGER
- *> On entry, N specifies the order of the matrix A.
- *> N must be at least zero.
- *> Unchanged on exit.
- *>
- *> NRHS - INTEGER
- *> On entry, NRHS specifies the number of right hand sides,
- *> i.e., the number of vectors x to be multiplied by A.
- *> NRHS must be at least zero.
- *> Unchanged on exit.
- *>
- *> A - COMPLEX array, dimension( N*(N+1)/2 )
- *> On entry, A contains a block diagonal matrix and the
- *> multipliers of the transformations used to obtain it,
- *> stored as a packed triangular matrix.
- *> Unchanged on exit.
- *>
- *> IPIV - INTEGER array, dimension( N )
- *> On entry, IPIV contains the vector of pivot indices as
- *> determined by CSPTRF or CHPTRF.
- *> If IPIV( K ) = K, no interchange was done.
- *> If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
- *> changed with row IPIV( K ) and a 1 x 1 pivot block was used.
- *> If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
- *> with row | IPIV( K ) | and a 2 x 2 pivot block was used.
- *> If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
- *> with row | IPIV( K ) | and a 2 x 2 pivot block was used.
- *>
- *> B - COMPLEX array, dimension( LDB, NRHS )
- *> On entry, B contains NRHS vectors of length N.
- *> On exit, B is overwritten with the product A * B.
- *>
- *> LDB - INTEGER
- *> On entry, LDB contains the leading dimension of B as
- *> declared in the calling program. LDB must be at least
- *> max( 1, N ).
- *> Unchanged on exit.
- *>
- *> INFO - INTEGER
- *> INFO is the error flag.
- *> On exit, a value of 0 indicates a successful exit.
- *> A negative value, say -K, indicates that the K-th argument
- *> has an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CLAVHP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
- $ INFO )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, TRANS, UPLO
- INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX A( * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL NOUNIT
- INTEGER J, K, KC, KCNEXT, KP
- COMPLEX D11, D12, D21, D22, T1, T2
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMV, CGERU, CLACGV, CSCAL, CSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, CONJG, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
- $ THEN
- INFO = -2
- ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
- $ THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CLAVHP ', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- NOUNIT = LSAME( DIAG, 'N' )
- *------------------------------------------
- *
- * Compute B := A * B (No transpose)
- *
- *------------------------------------------
- IF( LSAME( TRANS, 'N' ) ) THEN
- *
- * Compute B := U*B
- * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Loop forward applying the transformations.
- *
- K = 1
- KC = 1
- 10 CONTINUE
- IF( K.GT.N )
- $ GO TO 30
- *
- * 1 x 1 pivot block
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * Multiply by the diagonal element if forming U * D.
- *
- IF( NOUNIT )
- $ CALL CSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
- *
- * Multiply by P(K) * inv(U(K)) if K > 1.
- *
- IF( K.GT.1 ) THEN
- *
- * Apply the transformation.
- *
- CALL CGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
- $ LDB, B( 1, 1 ), LDB )
- *
- * Interchange if P(K) != I.
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- KC = KC + K
- K = K + 1
- ELSE
- *
- * 2 x 2 pivot block
- *
- KCNEXT = KC + K
- *
- * Multiply by the diagonal block if forming U * D.
- *
- IF( NOUNIT ) THEN
- D11 = A( KCNEXT-1 )
- D22 = A( KCNEXT+K )
- D12 = A( KCNEXT+K-1 )
- D21 = CONJG( D12 )
- DO 20 J = 1, NRHS
- T1 = B( K, J )
- T2 = B( K+1, J )
- B( K, J ) = D11*T1 + D12*T2
- B( K+1, J ) = D21*T1 + D22*T2
- 20 CONTINUE
- END IF
- *
- * Multiply by P(K) * inv(U(K)) if K > 1.
- *
- IF( K.GT.1 ) THEN
- *
- * Apply the transformations.
- *
- CALL CGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
- $ LDB, B( 1, 1 ), LDB )
- CALL CGERU( K-1, NRHS, ONE, A( KCNEXT ), 1,
- $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
- *
- * Interchange if P(K) != I.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- KC = KCNEXT + K + 1
- K = K + 2
- END IF
- GO TO 10
- 30 CONTINUE
- *
- * Compute B := L*B
- * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
- *
- ELSE
- *
- * Loop backward applying the transformations to B.
- *
- K = N
- KC = N*( N+1 ) / 2 + 1
- 40 CONTINUE
- IF( K.LT.1 )
- $ GO TO 60
- KC = KC - ( N-K+1 )
- *
- * Test the pivot index. If greater than zero, a 1 x 1
- * pivot was used, otherwise a 2 x 2 pivot was used.
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 pivot block:
- *
- * Multiply by the diagonal element if forming L * D.
- *
- IF( NOUNIT )
- $ CALL CSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
- *
- * Multiply by P(K) * inv(L(K)) if K < N.
- *
- IF( K.NE.N ) THEN
- KP = IPIV( K )
- *
- * Apply the transformation.
- *
- CALL CGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
- $ LDB, B( K+1, 1 ), LDB )
- *
- * Interchange if a permutation was applied at the
- * K-th step of the factorization.
- *
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- K = K - 1
- *
- ELSE
- *
- * 2 x 2 pivot block:
- *
- KCNEXT = KC - ( N-K+2 )
- *
- * Multiply by the diagonal block if forming L * D.
- *
- IF( NOUNIT ) THEN
- D11 = A( KCNEXT )
- D22 = A( KC )
- D21 = A( KCNEXT+1 )
- D12 = CONJG( D21 )
- DO 50 J = 1, NRHS
- T1 = B( K-1, J )
- T2 = B( K, J )
- B( K-1, J ) = D11*T1 + D12*T2
- B( K, J ) = D21*T1 + D22*T2
- 50 CONTINUE
- END IF
- *
- * Multiply by P(K) * inv(L(K)) if K < N.
- *
- IF( K.NE.N ) THEN
- *
- * Apply the transformation.
- *
- CALL CGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
- $ LDB, B( K+1, 1 ), LDB )
- CALL CGERU( N-K, NRHS, ONE, A( KCNEXT+2 ), 1,
- $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
- *
- * Interchange if a permutation was applied at the
- * K-th step of the factorization.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- KC = KCNEXT
- K = K - 2
- END IF
- GO TO 40
- 60 CONTINUE
- END IF
- *-------------------------------------------------
- *
- * Compute B := A^H * B (conjugate transpose)
- *
- *-------------------------------------------------
- ELSE
- *
- * Form B := U^H*B
- * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
- * and U^H = inv(U^H(1))*P(1)* ... *inv(U^H(m))*P(m)
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Loop backward applying the transformations.
- *
- K = N
- KC = N*( N+1 ) / 2 + 1
- 70 IF( K.LT.1 )
- $ GO TO 90
- KC = KC - K
- *
- * 1 x 1 pivot block.
- *
- IF( IPIV( K ).GT.0 ) THEN
- IF( K.GT.1 ) THEN
- *
- * Interchange if P(K) != I.
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- * Apply the transformation:
- * y := y - B' * conjg(x)
- * where x is a column of A and y is a row of B.
- *
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- CALL CGEMV( 'Conjugate', K-1, NRHS, ONE, B, LDB,
- $ A( KC ), 1, ONE, B( K, 1 ), LDB )
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- END IF
- IF( NOUNIT )
- $ CALL CSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
- K = K - 1
- *
- * 2 x 2 pivot block.
- *
- ELSE
- KCNEXT = KC - ( K-1 )
- IF( K.GT.2 ) THEN
- *
- * Interchange if P(K) != I.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K-1 )
- $ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
- $ LDB )
- *
- * Apply the transformations.
- *
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
- $ A( KC ), 1, ONE, B( K, 1 ), LDB )
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- *
- CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
- CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
- $ A( KCNEXT ), 1, ONE, B( K-1, 1 ), LDB )
- CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
- END IF
- *
- * Multiply by the diagonal block if non-unit.
- *
- IF( NOUNIT ) THEN
- D11 = A( KC-1 )
- D22 = A( KC+K-1 )
- D12 = A( KC+K-2 )
- D21 = CONJG( D12 )
- DO 80 J = 1, NRHS
- T1 = B( K-1, J )
- T2 = B( K, J )
- B( K-1, J ) = D11*T1 + D12*T2
- B( K, J ) = D21*T1 + D22*T2
- 80 CONTINUE
- END IF
- KC = KCNEXT
- K = K - 2
- END IF
- GO TO 70
- 90 CONTINUE
- *
- * Form B := L^H*B
- * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
- * and L^H = inv(L(m))*P(m)* ... *inv(L(1))*P(1)
- *
- ELSE
- *
- * Loop forward applying the L-transformations.
- *
- K = 1
- KC = 1
- 100 CONTINUE
- IF( K.GT.N )
- $ GO TO 120
- *
- * 1 x 1 pivot block
- *
- IF( IPIV( K ).GT.0 ) THEN
- IF( K.LT.N ) THEN
- *
- * Interchange if P(K) != I.
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- * Apply the transformation
- *
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- CALL CGEMV( 'Conjugate', N-K, NRHS, ONE, B( K+1, 1 ),
- $ LDB, A( KC+1 ), 1, ONE, B( K, 1 ), LDB )
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- END IF
- IF( NOUNIT )
- $ CALL CSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
- KC = KC + N - K + 1
- K = K + 1
- *
- * 2 x 2 pivot block.
- *
- ELSE
- KCNEXT = KC + N - K + 1
- IF( K.LT.N-1 ) THEN
- *
- * Interchange if P(K) != I.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K+1 )
- $ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
- $ LDB )
- *
- * Apply the transformation
- *
- CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
- CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
- $ B( K+2, 1 ), LDB, A( KCNEXT+1 ), 1, ONE,
- $ B( K+1, 1 ), LDB )
- CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
- *
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
- $ B( K+2, 1 ), LDB, A( KC+2 ), 1, ONE,
- $ B( K, 1 ), LDB )
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- END IF
- *
- * Multiply by the diagonal block if non-unit.
- *
- IF( NOUNIT ) THEN
- D11 = A( KC )
- D22 = A( KCNEXT )
- D21 = A( KC+1 )
- D12 = CONJG( D21 )
- DO 110 J = 1, NRHS
- T1 = B( K, J )
- T2 = B( K+1, J )
- B( K, J ) = D11*T1 + D12*T2
- B( K+1, J ) = D21*T1 + D22*T2
- 110 CONTINUE
- END IF
- KC = KCNEXT + ( N-K )
- K = K + 2
- END IF
- GO TO 100
- 120 CONTINUE
- END IF
- *
- END IF
- RETURN
- *
- * End of CLAVHP
- *
- END
|