|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564 |
- *> \brief \b CLAVHE
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLAVHE( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
- * LDB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, TRANS, UPLO
- * INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX A( LDA, * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLAVHE performs one of the matrix-vector operations
- *> x := A*x or x := A^H*x,
- *> where x is an N element vector and A is one of the factors
- *> from the block U*D*U' or L*D*L' factorization computed by CHETRF.
- *>
- *> If TRANS = 'N', multiplies by U or U * D (or L or L * D)
- *> If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L')
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the factor stored in A is upper or lower
- *> triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the operation to be performed:
- *> = 'N': x := A*x
- *> = 'C': x := A^H*x
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the diagonal blocks are unit
- *> matrices. If the diagonal blocks are assumed to be unit,
- *> then A = U or A = L, otherwise A = U*D or A = L*D.
- *> = 'U': Diagonal blocks are assumed to be unit matrices.
- *> = 'N': Diagonal blocks are assumed to be non-unit matrices.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of vectors
- *> x to be multiplied by A. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The block diagonal matrix D and the multipliers used to
- *> obtain the factor U or L as computed by CHETRF_ROOK.
- *> Stored as a 2-D triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D,
- *> as determined by CHETRF.
- *>
- *> If UPLO = 'U':
- *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
- *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
- *> (If IPIV( k ) = k, no interchange was done).
- *>
- *> If IPIV(k) = IPIV(k-1) < 0, then rows and
- *> columns k-1 and -IPIV(k) were interchanged,
- *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
- *>
- *> If UPLO = 'L':
- *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
- *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
- *> (If IPIV( k ) = k, no interchange was done).
- *>
- *> If IPIV(k) = IPIV(k+1) < 0, then rows and
- *> columns k+1 and -IPIV(k) were interchanged,
- *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, B contains NRHS vectors of length N.
- *> On exit, B is overwritten with the product A * B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -k, the k-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CLAVHE( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
- $ LDB, INFO )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, TRANS, UPLO
- INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX A( LDA, * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL NOUNIT
- INTEGER J, K, KP
- COMPLEX D11, D12, D21, D22, T1, T2
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMV, CGERU, CLACGV, CSCAL, CSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, CONJG, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
- $ THEN
- INFO = -2
- ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
- $ THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -9
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CLAVHE ', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- NOUNIT = LSAME( DIAG, 'N' )
- *------------------------------------------
- *
- * Compute B := A * B (No transpose)
- *
- *------------------------------------------
- IF( LSAME( TRANS, 'N' ) ) THEN
- *
- * Compute B := U*B
- * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Loop forward applying the transformations.
- *
- K = 1
- 10 CONTINUE
- IF( K.GT.N )
- $ GO TO 30
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 pivot block
- *
- * Multiply by the diagonal element if forming U * D.
- *
- IF( NOUNIT )
- $ CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
- *
- * Multiply by P(K) * inv(U(K)) if K > 1.
- *
- IF( K.GT.1 ) THEN
- *
- * Apply the transformation.
- *
- CALL CGERU( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
- $ LDB, B( 1, 1 ), LDB )
- *
- * Interchange if P(K) != I.
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- K = K + 1
- ELSE
- *
- * 2 x 2 pivot block
- *
- * Multiply by the diagonal block if forming U * D.
- *
- IF( NOUNIT ) THEN
- D11 = A( K, K )
- D22 = A( K+1, K+1 )
- D12 = A( K, K+1 )
- D21 = CONJG( D12 )
- DO 20 J = 1, NRHS
- T1 = B( K, J )
- T2 = B( K+1, J )
- B( K, J ) = D11*T1 + D12*T2
- B( K+1, J ) = D21*T1 + D22*T2
- 20 CONTINUE
- END IF
- *
- * Multiply by P(K) * inv(U(K)) if K > 1.
- *
- IF( K.GT.1 ) THEN
- *
- * Apply the transformations.
- *
- CALL CGERU( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
- $ LDB, B( 1, 1 ), LDB )
- CALL CGERU( K-1, NRHS, ONE, A( 1, K+1 ), 1,
- $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
- *
- * Interchange if P(K) != I.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- K = K + 2
- END IF
- GO TO 10
- 30 CONTINUE
- *
- * Compute B := L*B
- * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
- *
- ELSE
- *
- * Loop backward applying the transformations to B.
- *
- K = N
- 40 CONTINUE
- IF( K.LT.1 )
- $ GO TO 60
- *
- * Test the pivot index. If greater than zero, a 1 x 1
- * pivot was used, otherwise a 2 x 2 pivot was used.
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 pivot block:
- *
- * Multiply by the diagonal element if forming L * D.
- *
- IF( NOUNIT )
- $ CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
- *
- * Multiply by P(K) * inv(L(K)) if K < N.
- *
- IF( K.NE.N ) THEN
- KP = IPIV( K )
- *
- * Apply the transformation.
- *
- CALL CGERU( N-K, NRHS, ONE, A( K+1, K ), 1,
- $ B( K, 1 ), LDB, B( K+1, 1 ), LDB )
- *
- * Interchange if a permutation was applied at the
- * K-th step of the factorization.
- *
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- K = K - 1
- *
- ELSE
- *
- * 2 x 2 pivot block:
- *
- * Multiply by the diagonal block if forming L * D.
- *
- IF( NOUNIT ) THEN
- D11 = A( K-1, K-1 )
- D22 = A( K, K )
- D21 = A( K, K-1 )
- D12 = CONJG( D21 )
- DO 50 J = 1, NRHS
- T1 = B( K-1, J )
- T2 = B( K, J )
- B( K-1, J ) = D11*T1 + D12*T2
- B( K, J ) = D21*T1 + D22*T2
- 50 CONTINUE
- END IF
- *
- * Multiply by P(K) * inv(L(K)) if K < N.
- *
- IF( K.NE.N ) THEN
- *
- * Apply the transformation.
- *
- CALL CGERU( N-K, NRHS, ONE, A( K+1, K ), 1,
- $ B( K, 1 ), LDB, B( K+1, 1 ), LDB )
- CALL CGERU( N-K, NRHS, ONE, A( K+1, K-1 ), 1,
- $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
- *
- * Interchange if a permutation was applied at the
- * K-th step of the factorization.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- K = K - 2
- END IF
- GO TO 40
- 60 CONTINUE
- END IF
- *--------------------------------------------------
- *
- * Compute B := A^H * B (conjugate transpose)
- *
- *--------------------------------------------------
- ELSE
- *
- * Form B := U^H*B
- * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
- * and U^H = inv(U^H(1))*P(1)* ... *inv(U^H(m))*P(m)
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Loop backward applying the transformations.
- *
- K = N
- 70 IF( K.LT.1 )
- $ GO TO 90
- *
- * 1 x 1 pivot block.
- *
- IF( IPIV( K ).GT.0 ) THEN
- IF( K.GT.1 ) THEN
- *
- * Interchange if P(K) != I.
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- * Apply the transformation
- * y = y - B' conjg(x),
- * where x is a column of A and y is a row of B.
- *
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- CALL CGEMV( 'Conjugate', K-1, NRHS, ONE, B, LDB,
- $ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- END IF
- IF( NOUNIT )
- $ CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
- K = K - 1
- *
- * 2 x 2 pivot block.
- *
- ELSE
- IF( K.GT.2 ) THEN
- *
- * Interchange if P(K) != I.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K-1 )
- $ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
- $ LDB )
- *
- * Apply the transformations
- * y = y - B' conjg(x),
- * where x is a block column of A and y is a block
- * row of B.
- *
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
- $ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- *
- CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
- CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
- $ A( 1, K-1 ), 1, ONE, B( K-1, 1 ), LDB )
- CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
- END IF
- *
- * Multiply by the diagonal block if non-unit.
- *
- IF( NOUNIT ) THEN
- D11 = A( K-1, K-1 )
- D22 = A( K, K )
- D12 = A( K-1, K )
- D21 = CONJG( D12 )
- DO 80 J = 1, NRHS
- T1 = B( K-1, J )
- T2 = B( K, J )
- B( K-1, J ) = D11*T1 + D12*T2
- B( K, J ) = D21*T1 + D22*T2
- 80 CONTINUE
- END IF
- K = K - 2
- END IF
- GO TO 70
- 90 CONTINUE
- *
- * Form B := L^H*B
- * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
- * and L^H = inv(L^H(m))*P(m)* ... *inv(L^H(1))*P(1)
- *
- ELSE
- *
- * Loop forward applying the L-transformations.
- *
- K = 1
- 100 CONTINUE
- IF( K.GT.N )
- $ GO TO 120
- *
- * 1 x 1 pivot block
- *
- IF( IPIV( K ).GT.0 ) THEN
- IF( K.LT.N ) THEN
- *
- * Interchange if P(K) != I.
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- * Apply the transformation
- *
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- CALL CGEMV( 'Conjugate', N-K, NRHS, ONE, B( K+1, 1 ),
- $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- END IF
- IF( NOUNIT )
- $ CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
- K = K + 1
- *
- * 2 x 2 pivot block.
- *
- ELSE
- IF( K.LT.N-1 ) THEN
- *
- * Interchange if P(K) != I.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K+1 )
- $ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
- $ LDB )
- *
- * Apply the transformation
- *
- CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
- CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
- $ B( K+2, 1 ), LDB, A( K+2, K+1 ), 1, ONE,
- $ B( K+1, 1 ), LDB )
- CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
- *
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
- $ B( K+2, 1 ), LDB, A( K+2, K ), 1, ONE,
- $ B( K, 1 ), LDB )
- CALL CLACGV( NRHS, B( K, 1 ), LDB )
- END IF
- *
- * Multiply by the diagonal block if non-unit.
- *
- IF( NOUNIT ) THEN
- D11 = A( K, K )
- D22 = A( K+1, K+1 )
- D21 = A( K+1, K )
- D12 = CONJG( D21 )
- DO 110 J = 1, NRHS
- T1 = B( K, J )
- T2 = B( K+1, J )
- B( K, J ) = D11*T1 + D12*T2
- B( K+1, J ) = D21*T1 + D22*T2
- 110 CONTINUE
- END IF
- K = K + 2
- END IF
- GO TO 100
- 120 CONTINUE
- END IF
- *
- END IF
- RETURN
- *
- * End of CLAVHE
- *
- END
|