|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591 |
- *> \brief \b CDRVRFP
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CDRVRFP( NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL,
- * + THRESH, A, ASAV, AFAC, AINV, B,
- * + BSAV, XACT, X, ARF, ARFINV,
- * + C_WORK_CLATMS, C_WORK_CPOT02,
- * + C_WORK_CPOT03, S_WORK_CLATMS, S_WORK_CLANHE,
- * + S_WORK_CPOT01, S_WORK_CPOT02, S_WORK_CPOT03 )
- *
- * .. Scalar Arguments ..
- * INTEGER NN, NNS, NNT, NOUT
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * INTEGER NVAL( NN ), NSVAL( NNS ), NTVAL( NNT )
- * COMPLEX A( * )
- * COMPLEX AINV( * )
- * COMPLEX ASAV( * )
- * COMPLEX B( * )
- * COMPLEX BSAV( * )
- * COMPLEX AFAC( * )
- * COMPLEX ARF( * )
- * COMPLEX ARFINV( * )
- * COMPLEX XACT( * )
- * COMPLEX X( * )
- * COMPLEX C_WORK_CLATMS( * )
- * COMPLEX C_WORK_CPOT02( * )
- * COMPLEX C_WORK_CPOT03( * )
- * REAL S_WORK_CLATMS( * )
- * REAL S_WORK_CLANHE( * )
- * REAL S_WORK_CPOT01( * )
- * REAL S_WORK_CPOT02( * )
- * REAL S_WORK_CPOT03( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CDRVRFP tests the LAPACK RFP routines:
- *> CPFTRF, CPFTRS, and CPFTRI.
- *>
- *> This testing routine follow the same tests as CDRVPO (test for the full
- *> format Symmetric Positive Definite solver).
- *>
- *> The tests are performed in Full Format, conversion back and forth from
- *> full format to RFP format are performed using the routines CTRTTF and
- *> CTFTTR.
- *>
- *> First, a specific matrix A of size N is created. There is nine types of
- *> different matrixes possible.
- *> 1. Diagonal 6. Random, CNDNUM = sqrt(0.1/EPS)
- *> 2. Random, CNDNUM = 2 7. Random, CNDNUM = 0.1/EPS
- *> *3. First row and column zero 8. Scaled near underflow
- *> *4. Last row and column zero 9. Scaled near overflow
- *> *5. Middle row and column zero
- *> (* - tests error exits from CPFTRF, no test ratios are computed)
- *> A solution XACT of size N-by-NRHS is created and the associated right
- *> hand side B as well. Then CPFTRF is called to compute L (or U), the
- *> Cholesky factor of A. Then L (or U) is used to solve the linear system
- *> of equations AX = B. This gives X. Then L (or U) is used to compute the
- *> inverse of A, AINV. The following four tests are then performed:
- *> (1) norm( L*L' - A ) / ( N * norm(A) * EPS ) or
- *> norm( U'*U - A ) / ( N * norm(A) * EPS ),
- *> (2) norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
- *> (3) norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
- *> (4) ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
- *> where EPS is the machine precision, RCOND the condition number of A, and
- *> norm( . ) the 1-norm for (1,2,3) and the inf-norm for (4).
- *> Errors occur when INFO parameter is not as expected. Failures occur when
- *> a test ratios is greater than THRES.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NNS
- *> \verbatim
- *> NNS is INTEGER
- *> The number of values of NRHS contained in the vector NSVAL.
- *> \endverbatim
- *>
- *> \param[in] NSVAL
- *> \verbatim
- *> NSVAL is INTEGER array, dimension (NNS)
- *> The values of the number of right-hand sides NRHS.
- *> \endverbatim
- *>
- *> \param[in] NNT
- *> \verbatim
- *> NNT is INTEGER
- *> The number of values of MATRIX TYPE contained in the vector NTVAL.
- *> \endverbatim
- *>
- *> \param[in] NTVAL
- *> \verbatim
- *> NTVAL is INTEGER array, dimension (NNT)
- *> The values of matrix type (between 0 and 9 for PO/PP/PF matrices).
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] ASAV
- *> \verbatim
- *> ASAV is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AFAC
- *> \verbatim
- *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AINV
- *> \verbatim
- *> AINV is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (NMAX*MAXRHS)
- *> \endverbatim
- *>
- *> \param[out] BSAV
- *> \verbatim
- *> BSAV is COMPLEX array, dimension (NMAX*MAXRHS)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is COMPLEX array, dimension (NMAX*MAXRHS)
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX array, dimension (NMAX*MAXRHS)
- *> \endverbatim
- *>
- *> \param[out] ARF
- *> \verbatim
- *> ARF is COMPLEX array, dimension ((NMAX*(NMAX+1))/2)
- *> \endverbatim
- *>
- *> \param[out] ARFINV
- *> \verbatim
- *> ARFINV is COMPLEX array, dimension ((NMAX*(NMAX+1))/2)
- *> \endverbatim
- *>
- *> \param[out] C_WORK_CLATMS
- *> \verbatim
- *> C_WORK_CLATMS is COMPLEX array, dimension ( 3*NMAX )
- *> \endverbatim
- *>
- *> \param[out] C_WORK_CPOT02
- *> \verbatim
- *> C_WORK_CPOT02 is COMPLEX array, dimension ( NMAX*MAXRHS )
- *> \endverbatim
- *>
- *> \param[out] C_WORK_CPOT03
- *> \verbatim
- *> C_WORK_CPOT03 is COMPLEX array, dimension ( NMAX*NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_WORK_CLATMS
- *> \verbatim
- *> S_WORK_CLATMS is REAL array, dimension ( NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_WORK_CLANHE
- *> \verbatim
- *> S_WORK_CLANHE is REAL array, dimension ( NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_WORK_CPOT01
- *> \verbatim
- *> S_WORK_CPOT01 is REAL array, dimension ( NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_WORK_CPOT02
- *> \verbatim
- *> S_WORK_CPOT02 is REAL array, dimension ( NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_WORK_CPOT03
- *> \verbatim
- *> S_WORK_CPOT03 is REAL array, dimension ( NMAX )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CDRVRFP( NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL,
- + THRESH, A, ASAV, AFAC, AINV, B,
- + BSAV, XACT, X, ARF, ARFINV,
- + C_WORK_CLATMS, C_WORK_CPOT02,
- + C_WORK_CPOT03, S_WORK_CLATMS, S_WORK_CLANHE,
- + S_WORK_CPOT01, S_WORK_CPOT02, S_WORK_CPOT03 )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER NN, NNS, NNT, NOUT
- REAL THRESH
- * ..
- * .. Array Arguments ..
- INTEGER NVAL( NN ), NSVAL( NNS ), NTVAL( NNT )
- COMPLEX A( * )
- COMPLEX AINV( * )
- COMPLEX ASAV( * )
- COMPLEX B( * )
- COMPLEX BSAV( * )
- COMPLEX AFAC( * )
- COMPLEX ARF( * )
- COMPLEX ARFINV( * )
- COMPLEX XACT( * )
- COMPLEX X( * )
- COMPLEX C_WORK_CLATMS( * )
- COMPLEX C_WORK_CPOT02( * )
- COMPLEX C_WORK_CPOT03( * )
- REAL S_WORK_CLATMS( * )
- REAL S_WORK_CLANHE( * )
- REAL S_WORK_CPOT01( * )
- REAL S_WORK_CPOT02( * )
- REAL S_WORK_CPOT03( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 4 )
- * ..
- * .. Local Scalars ..
- LOGICAL ZEROT
- INTEGER I, INFO, IUPLO, LDA, LDB, IMAT, NERRS, NFAIL,
- + NRHS, NRUN, IZERO, IOFF, K, NT, N, IFORM, IIN,
- + IIT, IIS
- CHARACTER DIST, CTYPE, UPLO, CFORM
- INTEGER KL, KU, MODE
- REAL ANORM, AINVNM, CNDNUM, RCONDC
- * ..
- * .. Local Arrays ..
- CHARACTER UPLOS( 2 ), FORMS( 2 )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- REAL RESULT( NTESTS )
- * ..
- * .. External Functions ..
- REAL CLANHE
- EXTERNAL CLANHE
- * ..
- * .. External Subroutines ..
- EXTERNAL ALADHD, ALAERH, ALASVM, CGET04, CTFTTR, CLACPY,
- + CLAIPD, CLARHS, CLATB4, CLATMS, CPFTRI, CPFTRF,
- + CPFTRS, CPOT01, CPOT02, CPOT03, CPOTRI, CPOTRF,
- + CTRTTF
- * ..
- * .. Scalars in Common ..
- CHARACTER*32 SRNAMT
- * ..
- * .. Common blocks ..
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 1988, 1989, 1990, 1991 /
- DATA UPLOS / 'U', 'L' /
- DATA FORMS / 'N', 'C' /
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants and the random number seed.
- *
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- DO 130 IIN = 1, NN
- *
- N = NVAL( IIN )
- LDA = MAX( N, 1 )
- LDB = MAX( N, 1 )
- *
- DO 980 IIS = 1, NNS
- *
- NRHS = NSVAL( IIS )
- *
- DO 120 IIT = 1, NNT
- *
- IMAT = NTVAL( IIT )
- *
- * If N.EQ.0, only consider the first type
- *
- IF( N.EQ.0 .AND. IIT.GE.1 ) GO TO 120
- *
- * Skip types 3, 4, or 5 if the matrix size is too small.
- *
- IF( IMAT.EQ.4 .AND. N.LE.1 ) GO TO 120
- IF( IMAT.EQ.5 .AND. N.LE.2 ) GO TO 120
- *
- * Do first for UPLO = 'U', then for UPLO = 'L'
- *
- DO 110 IUPLO = 1, 2
- UPLO = UPLOS( IUPLO )
- *
- * Do first for CFORM = 'N', then for CFORM = 'C'
- *
- DO 100 IFORM = 1, 2
- CFORM = FORMS( IFORM )
- *
- * Set up parameters with CLATB4 and generate a test
- * matrix with CLATMS.
- *
- CALL CLATB4( 'CPO', IMAT, N, N, CTYPE, KL, KU,
- + ANORM, MODE, CNDNUM, DIST )
- *
- SRNAMT = 'CLATMS'
- CALL CLATMS( N, N, DIST, ISEED, CTYPE,
- + S_WORK_CLATMS,
- + MODE, CNDNUM, ANORM, KL, KU, UPLO, A,
- + LDA, C_WORK_CLATMS, INFO )
- *
- * Check error code from CLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( 'CPF', 'CLATMS', INFO, 0, UPLO, N,
- + N, -1, -1, -1, IIT, NFAIL, NERRS,
- + NOUT )
- GO TO 100
- END IF
- *
- * For types 3-5, zero one row and column of the matrix to
- * test that INFO is returned correctly.
- *
- ZEROT = IMAT.GE.3 .AND. IMAT.LE.5
- IF( ZEROT ) THEN
- IF( IIT.EQ.3 ) THEN
- IZERO = 1
- ELSE IF( IIT.EQ.4 ) THEN
- IZERO = N
- ELSE
- IZERO = N / 2 + 1
- END IF
- IOFF = ( IZERO-1 )*LDA
- *
- * Set row and column IZERO of A to 0.
- *
- IF( IUPLO.EQ.1 ) THEN
- DO 20 I = 1, IZERO - 1
- A( IOFF+I ) = ZERO
- 20 CONTINUE
- IOFF = IOFF + IZERO
- DO 30 I = IZERO, N
- A( IOFF ) = ZERO
- IOFF = IOFF + LDA
- 30 CONTINUE
- ELSE
- IOFF = IZERO
- DO 40 I = 1, IZERO - 1
- A( IOFF ) = ZERO
- IOFF = IOFF + LDA
- 40 CONTINUE
- IOFF = IOFF - IZERO
- DO 50 I = IZERO, N
- A( IOFF+I ) = ZERO
- 50 CONTINUE
- END IF
- ELSE
- IZERO = 0
- END IF
- *
- * Set the imaginary part of the diagonals.
- *
- CALL CLAIPD( N, A, LDA+1, 0 )
- *
- * Save a copy of the matrix A in ASAV.
- *
- CALL CLACPY( UPLO, N, N, A, LDA, ASAV, LDA )
- *
- * Compute the condition number of A (RCONDC).
- *
- IF( ZEROT ) THEN
- RCONDC = ZERO
- ELSE
- *
- * Compute the 1-norm of A.
- *
- ANORM = CLANHE( '1', UPLO, N, A, LDA,
- + S_WORK_CLANHE )
- *
- * Factor the matrix A.
- *
- CALL CPOTRF( UPLO, N, A, LDA, INFO )
- *
- * Form the inverse of A.
- *
- CALL CPOTRI( UPLO, N, A, LDA, INFO )
-
- IF ( N .NE. 0 ) THEN
- *
- * Compute the 1-norm condition number of A.
- *
- AINVNM = CLANHE( '1', UPLO, N, A, LDA,
- + S_WORK_CLANHE )
- RCONDC = ( ONE / ANORM ) / AINVNM
- *
- * Restore the matrix A.
- *
- CALL CLACPY( UPLO, N, N, ASAV, LDA, A, LDA )
- END IF
- *
- END IF
- *
- * Form an exact solution and set the right hand side.
- *
- SRNAMT = 'CLARHS'
- CALL CLARHS( 'CPO', 'N', UPLO, ' ', N, N, KL, KU,
- + NRHS, A, LDA, XACT, LDA, B, LDA,
- + ISEED, INFO )
- CALL CLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA )
- *
- * Compute the L*L' or U'*U factorization of the
- * matrix and solve the system.
- *
- CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
- CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDB )
- *
- SRNAMT = 'CTRTTF'
- CALL CTRTTF( CFORM, UPLO, N, AFAC, LDA, ARF, INFO )
- SRNAMT = 'CPFTRF'
- CALL CPFTRF( CFORM, UPLO, N, ARF, INFO )
- *
- * Check error code from CPFTRF.
- *
- IF( INFO.NE.IZERO ) THEN
- *
- * LANGOU: there is a small hick here: IZERO should
- * always be INFO however if INFO is ZERO, ALAERH does not
- * complain.
- *
- CALL ALAERH( 'CPF', 'CPFSV ', INFO, IZERO,
- + UPLO, N, N, -1, -1, NRHS, IIT,
- + NFAIL, NERRS, NOUT )
- GO TO 100
- END IF
- *
- * Skip the tests if INFO is not 0.
- *
- IF( INFO.NE.0 ) THEN
- GO TO 100
- END IF
- *
- SRNAMT = 'CPFTRS'
- CALL CPFTRS( CFORM, UPLO, N, NRHS, ARF, X, LDB,
- + INFO )
- *
- SRNAMT = 'CTFTTR'
- CALL CTFTTR( CFORM, UPLO, N, ARF, AFAC, LDA, INFO )
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL CLACPY( UPLO, N, N, AFAC, LDA, ASAV, LDA )
- CALL CPOT01( UPLO, N, A, LDA, AFAC, LDA,
- + S_WORK_CPOT01, RESULT( 1 ) )
- CALL CLACPY( UPLO, N, N, ASAV, LDA, AFAC, LDA )
- *
- * Form the inverse and compute the residual.
- *
- IF(MOD(N,2).EQ.0)THEN
- CALL CLACPY( 'A', N+1, N/2, ARF, N+1, ARFINV,
- + N+1 )
- ELSE
- CALL CLACPY( 'A', N, (N+1)/2, ARF, N, ARFINV,
- + N )
- END IF
- *
- SRNAMT = 'CPFTRI'
- CALL CPFTRI( CFORM, UPLO, N, ARFINV , INFO )
- *
- SRNAMT = 'CTFTTR'
- CALL CTFTTR( CFORM, UPLO, N, ARFINV, AINV, LDA,
- + INFO )
- *
- * Check error code from CPFTRI.
- *
- IF( INFO.NE.0 )
- + CALL ALAERH( 'CPO', 'CPFTRI', INFO, 0, UPLO, N,
- + N, -1, -1, -1, IMAT, NFAIL, NERRS,
- + NOUT )
- *
- CALL CPOT03( UPLO, N, A, LDA, AINV, LDA,
- + C_WORK_CPOT03, LDA, S_WORK_CPOT03,
- + RCONDC, RESULT( 2 ) )
- *
- * Compute residual of the computed solution.
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDA,
- + C_WORK_CPOT02, LDA )
- CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA,
- + C_WORK_CPOT02, LDA, S_WORK_CPOT02,
- + RESULT( 3 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- + RESULT( 4 ) )
- NT = 4
- *
- * Print information about the tests that did not
- * pass the threshold.
- *
- DO 60 K = 1, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- + CALL ALADHD( NOUT, 'CPF' )
- WRITE( NOUT, FMT = 9999 )'CPFSV ', UPLO,
- + N, IIT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 60 CONTINUE
- NRUN = NRUN + NT
- 100 CONTINUE
- 110 CONTINUE
- 120 CONTINUE
- 980 CONTINUE
- 130 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( 'CPF', NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( 1X, A6, ', UPLO=''', A1, ''', N =', I5, ', type ', I1,
- + ', test(', I1, ')=', G12.5 )
- *
- RETURN
- *
- * End of CDRVRFP
- *
- END
|