You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbgvd.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. *> \brief \b CHBGVD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHBGVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
  22. * Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
  23. * LIWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, UPLO
  27. * INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
  28. * $ LWORK, N
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IWORK( * )
  32. * REAL RWORK( * ), W( * )
  33. * COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
  34. * $ Z( LDZ, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> CHBGVD computes all the eigenvalues, and optionally, the eigenvectors
  44. *> of a complex generalized Hermitian-definite banded eigenproblem, of
  45. *> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
  46. *> and banded, and B is also positive definite. If eigenvectors are
  47. *> desired, it uses a divide and conquer algorithm.
  48. *>
  49. *> The divide and conquer algorithm makes very mild assumptions about
  50. *> floating point arithmetic. It will work on machines with a guard
  51. *> digit in add/subtract, or on those binary machines without guard
  52. *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
  53. *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
  54. *> without guard digits, but we know of none.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] JOBZ
  61. *> \verbatim
  62. *> JOBZ is CHARACTER*1
  63. *> = 'N': Compute eigenvalues only;
  64. *> = 'V': Compute eigenvalues and eigenvectors.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] UPLO
  68. *> \verbatim
  69. *> UPLO is CHARACTER*1
  70. *> = 'U': Upper triangles of A and B are stored;
  71. *> = 'L': Lower triangles of A and B are stored.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] N
  75. *> \verbatim
  76. *> N is INTEGER
  77. *> The order of the matrices A and B. N >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] KA
  81. *> \verbatim
  82. *> KA is INTEGER
  83. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  84. *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] KB
  88. *> \verbatim
  89. *> KB is INTEGER
  90. *> The number of superdiagonals of the matrix B if UPLO = 'U',
  91. *> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
  92. *> \endverbatim
  93. *>
  94. *> \param[in,out] AB
  95. *> \verbatim
  96. *> AB is COMPLEX array, dimension (LDAB, N)
  97. *> On entry, the upper or lower triangle of the Hermitian band
  98. *> matrix A, stored in the first ka+1 rows of the array. The
  99. *> j-th column of A is stored in the j-th column of the array AB
  100. *> as follows:
  101. *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
  102. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
  103. *>
  104. *> On exit, the contents of AB are destroyed.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDAB
  108. *> \verbatim
  109. *> LDAB is INTEGER
  110. *> The leading dimension of the array AB. LDAB >= KA+1.
  111. *> \endverbatim
  112. *>
  113. *> \param[in,out] BB
  114. *> \verbatim
  115. *> BB is COMPLEX array, dimension (LDBB, N)
  116. *> On entry, the upper or lower triangle of the Hermitian band
  117. *> matrix B, stored in the first kb+1 rows of the array. The
  118. *> j-th column of B is stored in the j-th column of the array BB
  119. *> as follows:
  120. *> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
  121. *> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
  122. *>
  123. *> On exit, the factor S from the split Cholesky factorization
  124. *> B = S**H*S, as returned by CPBSTF.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDBB
  128. *> \verbatim
  129. *> LDBB is INTEGER
  130. *> The leading dimension of the array BB. LDBB >= KB+1.
  131. *> \endverbatim
  132. *>
  133. *> \param[out] W
  134. *> \verbatim
  135. *> W is REAL array, dimension (N)
  136. *> If INFO = 0, the eigenvalues in ascending order.
  137. *> \endverbatim
  138. *>
  139. *> \param[out] Z
  140. *> \verbatim
  141. *> Z is COMPLEX array, dimension (LDZ, N)
  142. *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  143. *> eigenvectors, with the i-th column of Z holding the
  144. *> eigenvector associated with W(i). The eigenvectors are
  145. *> normalized so that Z**H*B*Z = I.
  146. *> If JOBZ = 'N', then Z is not referenced.
  147. *> \endverbatim
  148. *>
  149. *> \param[in] LDZ
  150. *> \verbatim
  151. *> LDZ is INTEGER
  152. *> The leading dimension of the array Z. LDZ >= 1, and if
  153. *> JOBZ = 'V', LDZ >= N.
  154. *> \endverbatim
  155. *>
  156. *> \param[out] WORK
  157. *> \verbatim
  158. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  159. *> On exit, if INFO=0, WORK(1) returns the optimal LWORK.
  160. *> \endverbatim
  161. *>
  162. *> \param[in] LWORK
  163. *> \verbatim
  164. *> LWORK is INTEGER
  165. *> The dimension of the array WORK.
  166. *> If N <= 1, LWORK >= 1.
  167. *> If JOBZ = 'N' and N > 1, LWORK >= N.
  168. *> If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
  169. *>
  170. *> If LWORK = -1, then a workspace query is assumed; the routine
  171. *> only calculates the optimal sizes of the WORK, RWORK and
  172. *> IWORK arrays, returns these values as the first entries of
  173. *> the WORK, RWORK and IWORK arrays, and no error message
  174. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  175. *> \endverbatim
  176. *>
  177. *> \param[out] RWORK
  178. *> \verbatim
  179. *> RWORK is REAL array, dimension (MAX(1,LRWORK))
  180. *> On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.
  181. *> \endverbatim
  182. *>
  183. *> \param[in] LRWORK
  184. *> \verbatim
  185. *> LRWORK is INTEGER
  186. *> The dimension of array RWORK.
  187. *> If N <= 1, LRWORK >= 1.
  188. *> If JOBZ = 'N' and N > 1, LRWORK >= N.
  189. *> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
  190. *>
  191. *> If LRWORK = -1, then a workspace query is assumed; the
  192. *> routine only calculates the optimal sizes of the WORK, RWORK
  193. *> and IWORK arrays, returns these values as the first entries
  194. *> of the WORK, RWORK and IWORK arrays, and no error message
  195. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  196. *> \endverbatim
  197. *>
  198. *> \param[out] IWORK
  199. *> \verbatim
  200. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  201. *> On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.
  202. *> \endverbatim
  203. *>
  204. *> \param[in] LIWORK
  205. *> \verbatim
  206. *> LIWORK is INTEGER
  207. *> The dimension of array IWORK.
  208. *> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
  209. *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
  210. *>
  211. *> If LIWORK = -1, then a workspace query is assumed; the
  212. *> routine only calculates the optimal sizes of the WORK, RWORK
  213. *> and IWORK arrays, returns these values as the first entries
  214. *> of the WORK, RWORK and IWORK arrays, and no error message
  215. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  216. *> \endverbatim
  217. *>
  218. *> \param[out] INFO
  219. *> \verbatim
  220. *> INFO is INTEGER
  221. *> = 0: successful exit
  222. *> < 0: if INFO = -i, the i-th argument had an illegal value
  223. *> > 0: if INFO = i, and i is:
  224. *> <= N: the algorithm failed to converge:
  225. *> i off-diagonal elements of an intermediate
  226. *> tridiagonal form did not converge to zero;
  227. *> > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF
  228. *> returned INFO = i: B is not positive definite.
  229. *> The factorization of B could not be completed and
  230. *> no eigenvalues or eigenvectors were computed.
  231. *> \endverbatim
  232. *
  233. * Authors:
  234. * ========
  235. *
  236. *> \author Univ. of Tennessee
  237. *> \author Univ. of California Berkeley
  238. *> \author Univ. of Colorado Denver
  239. *> \author NAG Ltd.
  240. *
  241. *> \date June 2016
  242. *
  243. *> \ingroup complexOTHEReigen
  244. *
  245. *> \par Contributors:
  246. * ==================
  247. *>
  248. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  249. *
  250. * =====================================================================
  251. SUBROUTINE CHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
  252. $ Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
  253. $ LIWORK, INFO )
  254. *
  255. * -- LAPACK driver routine (version 3.7.0) --
  256. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  257. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  258. * June 2016
  259. *
  260. * .. Scalar Arguments ..
  261. CHARACTER JOBZ, UPLO
  262. INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
  263. $ LWORK, N
  264. * ..
  265. * .. Array Arguments ..
  266. INTEGER IWORK( * )
  267. REAL RWORK( * ), W( * )
  268. COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
  269. $ Z( LDZ, * )
  270. * ..
  271. *
  272. * =====================================================================
  273. *
  274. * .. Parameters ..
  275. COMPLEX CONE, CZERO
  276. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
  277. $ CZERO = ( 0.0E+0, 0.0E+0 ) )
  278. * ..
  279. * .. Local Scalars ..
  280. LOGICAL LQUERY, UPPER, WANTZ
  281. CHARACTER VECT
  282. INTEGER IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLRWK,
  283. $ LLWK2, LRWMIN, LWMIN
  284. * ..
  285. * .. External Functions ..
  286. LOGICAL LSAME
  287. EXTERNAL LSAME
  288. * ..
  289. * .. External Subroutines ..
  290. EXTERNAL SSTERF, XERBLA, CGEMM, CHBGST, CHBTRD, CLACPY,
  291. $ CPBSTF, CSTEDC
  292. * ..
  293. * .. Executable Statements ..
  294. *
  295. * Test the input parameters.
  296. *
  297. WANTZ = LSAME( JOBZ, 'V' )
  298. UPPER = LSAME( UPLO, 'U' )
  299. LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  300. *
  301. INFO = 0
  302. IF( N.LE.1 ) THEN
  303. LWMIN = 1+N
  304. LRWMIN = 1+N
  305. LIWMIN = 1
  306. ELSE IF( WANTZ ) THEN
  307. LWMIN = 2*N**2
  308. LRWMIN = 1 + 5*N + 2*N**2
  309. LIWMIN = 3 + 5*N
  310. ELSE
  311. LWMIN = N
  312. LRWMIN = N
  313. LIWMIN = 1
  314. END IF
  315. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  316. INFO = -1
  317. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  318. INFO = -2
  319. ELSE IF( N.LT.0 ) THEN
  320. INFO = -3
  321. ELSE IF( KA.LT.0 ) THEN
  322. INFO = -4
  323. ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
  324. INFO = -5
  325. ELSE IF( LDAB.LT.KA+1 ) THEN
  326. INFO = -7
  327. ELSE IF( LDBB.LT.KB+1 ) THEN
  328. INFO = -9
  329. ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  330. INFO = -12
  331. END IF
  332. *
  333. IF( INFO.EQ.0 ) THEN
  334. WORK( 1 ) = LWMIN
  335. RWORK( 1 ) = LRWMIN
  336. IWORK( 1 ) = LIWMIN
  337. *
  338. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  339. INFO = -14
  340. ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  341. INFO = -16
  342. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  343. INFO = -18
  344. END IF
  345. END IF
  346. *
  347. IF( INFO.NE.0 ) THEN
  348. CALL XERBLA( 'CHBGVD', -INFO )
  349. RETURN
  350. ELSE IF( LQUERY ) THEN
  351. RETURN
  352. END IF
  353. *
  354. * Quick return if possible
  355. *
  356. IF( N.EQ.0 )
  357. $ RETURN
  358. *
  359. * Form a split Cholesky factorization of B.
  360. *
  361. CALL CPBSTF( UPLO, N, KB, BB, LDBB, INFO )
  362. IF( INFO.NE.0 ) THEN
  363. INFO = N + INFO
  364. RETURN
  365. END IF
  366. *
  367. * Transform problem to standard eigenvalue problem.
  368. *
  369. INDE = 1
  370. INDWRK = INDE + N
  371. INDWK2 = 1 + N*N
  372. LLWK2 = LWORK - INDWK2 + 2
  373. LLRWK = LRWORK - INDWRK + 2
  374. CALL CHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
  375. $ WORK, RWORK, IINFO )
  376. *
  377. * Reduce Hermitian band matrix to tridiagonal form.
  378. *
  379. IF( WANTZ ) THEN
  380. VECT = 'U'
  381. ELSE
  382. VECT = 'N'
  383. END IF
  384. CALL CHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
  385. $ LDZ, WORK, IINFO )
  386. *
  387. * For eigenvalues only, call SSTERF. For eigenvectors, call CSTEDC.
  388. *
  389. IF( .NOT.WANTZ ) THEN
  390. CALL SSTERF( N, W, RWORK( INDE ), INFO )
  391. ELSE
  392. CALL CSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
  393. $ LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
  394. $ INFO )
  395. CALL CGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
  396. $ WORK( INDWK2 ), N )
  397. CALL CLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
  398. END IF
  399. *
  400. WORK( 1 ) = LWMIN
  401. RWORK( 1 ) = LRWMIN
  402. IWORK( 1 ) = LIWMIN
  403. RETURN
  404. *
  405. * End of CHBGVD
  406. *
  407. END