You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlaqr2.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. *> \brief \b ZLAQR2 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLAQR2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  22. * IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
  23. * NV, WV, LDWV, WORK, LWORK )
  24. *
  25. * .. Scalar Arguments ..
  26. * INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
  27. * $ LDZ, LWORK, N, ND, NH, NS, NV, NW
  28. * LOGICAL WANTT, WANTZ
  29. * ..
  30. * .. Array Arguments ..
  31. * COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
  32. * $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> ZLAQR2 is identical to ZLAQR3 except that it avoids
  42. *> recursion by calling ZLAHQR instead of ZLAQR4.
  43. *>
  44. *> Aggressive early deflation:
  45. *>
  46. *> ZLAQR2 accepts as input an upper Hessenberg matrix
  47. *> H and performs an unitary similarity transformation
  48. *> designed to detect and deflate fully converged eigenvalues from
  49. *> a trailing principal submatrix. On output H has been over-
  50. *> written by a new Hessenberg matrix that is a perturbation of
  51. *> an unitary similarity transformation of H. It is to be
  52. *> hoped that the final version of H has many zero subdiagonal
  53. *> entries.
  54. *>
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] WANTT
  61. *> \verbatim
  62. *> WANTT is LOGICAL
  63. *> If .TRUE., then the Hessenberg matrix H is fully updated
  64. *> so that the triangular Schur factor may be
  65. *> computed (in cooperation with the calling subroutine).
  66. *> If .FALSE., then only enough of H is updated to preserve
  67. *> the eigenvalues.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] WANTZ
  71. *> \verbatim
  72. *> WANTZ is LOGICAL
  73. *> If .TRUE., then the unitary matrix Z is updated so
  74. *> so that the unitary Schur factor may be computed
  75. *> (in cooperation with the calling subroutine).
  76. *> If .FALSE., then Z is not referenced.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The order of the matrix H and (if WANTZ is .TRUE.) the
  83. *> order of the unitary matrix Z.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] KTOP
  87. *> \verbatim
  88. *> KTOP is INTEGER
  89. *> It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
  90. *> KBOT and KTOP together determine an isolated block
  91. *> along the diagonal of the Hessenberg matrix.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] KBOT
  95. *> \verbatim
  96. *> KBOT is INTEGER
  97. *> It is assumed without a check that either
  98. *> KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
  99. *> determine an isolated block along the diagonal of the
  100. *> Hessenberg matrix.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] NW
  104. *> \verbatim
  105. *> NW is INTEGER
  106. *> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
  107. *> \endverbatim
  108. *>
  109. *> \param[in,out] H
  110. *> \verbatim
  111. *> H is COMPLEX*16 array, dimension (LDH,N)
  112. *> On input the initial N-by-N section of H stores the
  113. *> Hessenberg matrix undergoing aggressive early deflation.
  114. *> On output H has been transformed by a unitary
  115. *> similarity transformation, perturbed, and the returned
  116. *> to Hessenberg form that (it is to be hoped) has some
  117. *> zero subdiagonal entries.
  118. *> \endverbatim
  119. *>
  120. *> \param[in] LDH
  121. *> \verbatim
  122. *> LDH is INTEGER
  123. *> Leading dimension of H just as declared in the calling
  124. *> subroutine. N <= LDH
  125. *> \endverbatim
  126. *>
  127. *> \param[in] ILOZ
  128. *> \verbatim
  129. *> ILOZ is INTEGER
  130. *> \endverbatim
  131. *>
  132. *> \param[in] IHIZ
  133. *> \verbatim
  134. *> IHIZ is INTEGER
  135. *> Specify the rows of Z to which transformations must be
  136. *> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
  137. *> \endverbatim
  138. *>
  139. *> \param[in,out] Z
  140. *> \verbatim
  141. *> Z is COMPLEX*16 array, dimension (LDZ,N)
  142. *> IF WANTZ is .TRUE., then on output, the unitary
  143. *> similarity transformation mentioned above has been
  144. *> accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
  145. *> If WANTZ is .FALSE., then Z is unreferenced.
  146. *> \endverbatim
  147. *>
  148. *> \param[in] LDZ
  149. *> \verbatim
  150. *> LDZ is INTEGER
  151. *> The leading dimension of Z just as declared in the
  152. *> calling subroutine. 1 <= LDZ.
  153. *> \endverbatim
  154. *>
  155. *> \param[out] NS
  156. *> \verbatim
  157. *> NS is INTEGER
  158. *> The number of unconverged (ie approximate) eigenvalues
  159. *> returned in SR and SI that may be used as shifts by the
  160. *> calling subroutine.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] ND
  164. *> \verbatim
  165. *> ND is INTEGER
  166. *> The number of converged eigenvalues uncovered by this
  167. *> subroutine.
  168. *> \endverbatim
  169. *>
  170. *> \param[out] SH
  171. *> \verbatim
  172. *> SH is COMPLEX*16 array, dimension (KBOT)
  173. *> On output, approximate eigenvalues that may
  174. *> be used for shifts are stored in SH(KBOT-ND-NS+1)
  175. *> through SR(KBOT-ND). Converged eigenvalues are
  176. *> stored in SH(KBOT-ND+1) through SH(KBOT).
  177. *> \endverbatim
  178. *>
  179. *> \param[out] V
  180. *> \verbatim
  181. *> V is COMPLEX*16 array, dimension (LDV,NW)
  182. *> An NW-by-NW work array.
  183. *> \endverbatim
  184. *>
  185. *> \param[in] LDV
  186. *> \verbatim
  187. *> LDV is INTEGER
  188. *> The leading dimension of V just as declared in the
  189. *> calling subroutine. NW <= LDV
  190. *> \endverbatim
  191. *>
  192. *> \param[in] NH
  193. *> \verbatim
  194. *> NH is INTEGER
  195. *> The number of columns of T. NH >= NW.
  196. *> \endverbatim
  197. *>
  198. *> \param[out] T
  199. *> \verbatim
  200. *> T is COMPLEX*16 array, dimension (LDT,NW)
  201. *> \endverbatim
  202. *>
  203. *> \param[in] LDT
  204. *> \verbatim
  205. *> LDT is INTEGER
  206. *> The leading dimension of T just as declared in the
  207. *> calling subroutine. NW <= LDT
  208. *> \endverbatim
  209. *>
  210. *> \param[in] NV
  211. *> \verbatim
  212. *> NV is INTEGER
  213. *> The number of rows of work array WV available for
  214. *> workspace. NV >= NW.
  215. *> \endverbatim
  216. *>
  217. *> \param[out] WV
  218. *> \verbatim
  219. *> WV is COMPLEX*16 array, dimension (LDWV,NW)
  220. *> \endverbatim
  221. *>
  222. *> \param[in] LDWV
  223. *> \verbatim
  224. *> LDWV is INTEGER
  225. *> The leading dimension of W just as declared in the
  226. *> calling subroutine. NW <= LDV
  227. *> \endverbatim
  228. *>
  229. *> \param[out] WORK
  230. *> \verbatim
  231. *> WORK is COMPLEX*16 array, dimension (LWORK)
  232. *> On exit, WORK(1) is set to an estimate of the optimal value
  233. *> of LWORK for the given values of N, NW, KTOP and KBOT.
  234. *> \endverbatim
  235. *>
  236. *> \param[in] LWORK
  237. *> \verbatim
  238. *> LWORK is INTEGER
  239. *> The dimension of the work array WORK. LWORK = 2*NW
  240. *> suffices, but greater efficiency may result from larger
  241. *> values of LWORK.
  242. *>
  243. *> If LWORK = -1, then a workspace query is assumed; ZLAQR2
  244. *> only estimates the optimal workspace size for the given
  245. *> values of N, NW, KTOP and KBOT. The estimate is returned
  246. *> in WORK(1). No error message related to LWORK is issued
  247. *> by XERBLA. Neither H nor Z are accessed.
  248. *> \endverbatim
  249. *
  250. * Authors:
  251. * ========
  252. *
  253. *> \author Univ. of Tennessee
  254. *> \author Univ. of California Berkeley
  255. *> \author Univ. of Colorado Denver
  256. *> \author NAG Ltd.
  257. *
  258. *> \ingroup complex16OTHERauxiliary
  259. *
  260. *> \par Contributors:
  261. * ==================
  262. *>
  263. *> Karen Braman and Ralph Byers, Department of Mathematics,
  264. *> University of Kansas, USA
  265. *>
  266. * =====================================================================
  267. SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  268. $ IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
  269. $ NV, WV, LDWV, WORK, LWORK )
  270. *
  271. * -- LAPACK auxiliary routine --
  272. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  273. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  274. *
  275. * .. Scalar Arguments ..
  276. INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
  277. $ LDZ, LWORK, N, ND, NH, NS, NV, NW
  278. LOGICAL WANTT, WANTZ
  279. * ..
  280. * .. Array Arguments ..
  281. COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
  282. $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
  283. * ..
  284. *
  285. * ================================================================
  286. *
  287. * .. Parameters ..
  288. COMPLEX*16 ZERO, ONE
  289. PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ),
  290. $ ONE = ( 1.0d0, 0.0d0 ) )
  291. DOUBLE PRECISION RZERO, RONE
  292. PARAMETER ( RZERO = 0.0d0, RONE = 1.0d0 )
  293. * ..
  294. * .. Local Scalars ..
  295. COMPLEX*16 BETA, CDUM, S, TAU
  296. DOUBLE PRECISION FOO, SAFMAX, SAFMIN, SMLNUM, ULP
  297. INTEGER I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
  298. $ KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWKOPT
  299. * ..
  300. * .. External Functions ..
  301. DOUBLE PRECISION DLAMCH
  302. EXTERNAL DLAMCH
  303. * ..
  304. * .. External Subroutines ..
  305. EXTERNAL DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
  306. $ ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
  307. * ..
  308. * .. Intrinsic Functions ..
  309. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
  310. * ..
  311. * .. Statement Functions ..
  312. DOUBLE PRECISION CABS1
  313. * ..
  314. * .. Statement Function definitions ..
  315. CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  316. * ..
  317. * .. Executable Statements ..
  318. *
  319. * ==== Estimate optimal workspace. ====
  320. *
  321. JW = MIN( NW, KBOT-KTOP+1 )
  322. IF( JW.LE.2 ) THEN
  323. LWKOPT = 1
  324. ELSE
  325. *
  326. * ==== Workspace query call to ZGEHRD ====
  327. *
  328. CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
  329. LWK1 = INT( WORK( 1 ) )
  330. *
  331. * ==== Workspace query call to ZUNMHR ====
  332. *
  333. CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
  334. $ WORK, -1, INFO )
  335. LWK2 = INT( WORK( 1 ) )
  336. *
  337. * ==== Optimal workspace ====
  338. *
  339. LWKOPT = JW + MAX( LWK1, LWK2 )
  340. END IF
  341. *
  342. * ==== Quick return in case of workspace query. ====
  343. *
  344. IF( LWORK.EQ.-1 ) THEN
  345. WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  346. RETURN
  347. END IF
  348. *
  349. * ==== Nothing to do ...
  350. * ... for an empty active block ... ====
  351. NS = 0
  352. ND = 0
  353. WORK( 1 ) = ONE
  354. IF( KTOP.GT.KBOT )
  355. $ RETURN
  356. * ... nor for an empty deflation window. ====
  357. IF( NW.LT.1 )
  358. $ RETURN
  359. *
  360. * ==== Machine constants ====
  361. *
  362. SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  363. SAFMAX = RONE / SAFMIN
  364. CALL DLABAD( SAFMIN, SAFMAX )
  365. ULP = DLAMCH( 'PRECISION' )
  366. SMLNUM = SAFMIN*( DBLE( N ) / ULP )
  367. *
  368. * ==== Setup deflation window ====
  369. *
  370. JW = MIN( NW, KBOT-KTOP+1 )
  371. KWTOP = KBOT - JW + 1
  372. IF( KWTOP.EQ.KTOP ) THEN
  373. S = ZERO
  374. ELSE
  375. S = H( KWTOP, KWTOP-1 )
  376. END IF
  377. *
  378. IF( KBOT.EQ.KWTOP ) THEN
  379. *
  380. * ==== 1-by-1 deflation window: not much to do ====
  381. *
  382. SH( KWTOP ) = H( KWTOP, KWTOP )
  383. NS = 1
  384. ND = 0
  385. IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
  386. $ KWTOP ) ) ) ) THEN
  387. NS = 0
  388. ND = 1
  389. IF( KWTOP.GT.KTOP )
  390. $ H( KWTOP, KWTOP-1 ) = ZERO
  391. END IF
  392. WORK( 1 ) = ONE
  393. RETURN
  394. END IF
  395. *
  396. * ==== Convert to spike-triangular form. (In case of a
  397. * . rare QR failure, this routine continues to do
  398. * . aggressive early deflation using that part of
  399. * . the deflation window that converged using INFQR
  400. * . here and there to keep track.) ====
  401. *
  402. CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
  403. CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
  404. *
  405. CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
  406. CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
  407. $ JW, V, LDV, INFQR )
  408. *
  409. * ==== Deflation detection loop ====
  410. *
  411. NS = JW
  412. ILST = INFQR + 1
  413. DO 10 KNT = INFQR + 1, JW
  414. *
  415. * ==== Small spike tip deflation test ====
  416. *
  417. FOO = CABS1( T( NS, NS ) )
  418. IF( FOO.EQ.RZERO )
  419. $ FOO = CABS1( S )
  420. IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
  421. $ THEN
  422. *
  423. * ==== One more converged eigenvalue ====
  424. *
  425. NS = NS - 1
  426. ELSE
  427. *
  428. * ==== One undeflatable eigenvalue. Move it up out of the
  429. * . way. (ZTREXC can not fail in this case.) ====
  430. *
  431. IFST = NS
  432. CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  433. ILST = ILST + 1
  434. END IF
  435. 10 CONTINUE
  436. *
  437. * ==== Return to Hessenberg form ====
  438. *
  439. IF( NS.EQ.0 )
  440. $ S = ZERO
  441. *
  442. IF( NS.LT.JW ) THEN
  443. *
  444. * ==== sorting the diagonal of T improves accuracy for
  445. * . graded matrices. ====
  446. *
  447. DO 30 I = INFQR + 1, NS
  448. IFST = I
  449. DO 20 J = I + 1, NS
  450. IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
  451. $ IFST = J
  452. 20 CONTINUE
  453. ILST = I
  454. IF( IFST.NE.ILST )
  455. $ CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  456. 30 CONTINUE
  457. END IF
  458. *
  459. * ==== Restore shift/eigenvalue array from T ====
  460. *
  461. DO 40 I = INFQR + 1, JW
  462. SH( KWTOP+I-1 ) = T( I, I )
  463. 40 CONTINUE
  464. *
  465. *
  466. IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
  467. IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
  468. *
  469. * ==== Reflect spike back into lower triangle ====
  470. *
  471. CALL ZCOPY( NS, V, LDV, WORK, 1 )
  472. DO 50 I = 1, NS
  473. WORK( I ) = DCONJG( WORK( I ) )
  474. 50 CONTINUE
  475. BETA = WORK( 1 )
  476. CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
  477. WORK( 1 ) = ONE
  478. *
  479. CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
  480. *
  481. CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
  482. $ WORK( JW+1 ) )
  483. CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
  484. $ WORK( JW+1 ) )
  485. CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
  486. $ WORK( JW+1 ) )
  487. *
  488. CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
  489. $ LWORK-JW, INFO )
  490. END IF
  491. *
  492. * ==== Copy updated reduced window into place ====
  493. *
  494. IF( KWTOP.GT.1 )
  495. $ H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
  496. CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
  497. CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
  498. $ LDH+1 )
  499. *
  500. * ==== Accumulate orthogonal matrix in order update
  501. * . H and Z, if requested. ====
  502. *
  503. IF( NS.GT.1 .AND. S.NE.ZERO )
  504. $ CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
  505. $ WORK( JW+1 ), LWORK-JW, INFO )
  506. *
  507. * ==== Update vertical slab in H ====
  508. *
  509. IF( WANTT ) THEN
  510. LTOP = 1
  511. ELSE
  512. LTOP = KTOP
  513. END IF
  514. DO 60 KROW = LTOP, KWTOP - 1, NV
  515. KLN = MIN( NV, KWTOP-KROW )
  516. CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
  517. $ LDH, V, LDV, ZERO, WV, LDWV )
  518. CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
  519. 60 CONTINUE
  520. *
  521. * ==== Update horizontal slab in H ====
  522. *
  523. IF( WANTT ) THEN
  524. DO 70 KCOL = KBOT + 1, N, NH
  525. KLN = MIN( NH, N-KCOL+1 )
  526. CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
  527. $ H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
  528. CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
  529. $ LDH )
  530. 70 CONTINUE
  531. END IF
  532. *
  533. * ==== Update vertical slab in Z ====
  534. *
  535. IF( WANTZ ) THEN
  536. DO 80 KROW = ILOZ, IHIZ, NV
  537. KLN = MIN( NV, IHIZ-KROW+1 )
  538. CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
  539. $ LDZ, V, LDV, ZERO, WV, LDWV )
  540. CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
  541. $ LDZ )
  542. 80 CONTINUE
  543. END IF
  544. END IF
  545. *
  546. * ==== Return the number of deflations ... ====
  547. *
  548. ND = JW - NS
  549. *
  550. * ==== ... and the number of shifts. (Subtracting
  551. * . INFQR from the spike length takes care
  552. * . of the case of a rare QR failure while
  553. * . calculating eigenvalues of the deflation
  554. * . window.) ====
  555. *
  556. NS = NS - INFQR
  557. *
  558. * ==== Return optimal workspace. ====
  559. *
  560. WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  561. *
  562. * ==== End of ZLAQR2 ====
  563. *
  564. END