You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zggsvp.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. *> \brief \b ZGGSVP
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGGSVP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
  22. * TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
  23. * IWORK, RWORK, TAU, WORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBQ, JOBU, JOBV
  27. * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  28. * DOUBLE PRECISION TOLA, TOLB
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IWORK( * )
  32. * DOUBLE PRECISION RWORK( * )
  33. * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  34. * $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> This routine is deprecated and has been replaced by routine ZGGSVP3.
  44. *>
  45. *> ZGGSVP computes unitary matrices U, V and Q such that
  46. *>
  47. *> N-K-L K L
  48. *> U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
  49. *> L ( 0 0 A23 )
  50. *> M-K-L ( 0 0 0 )
  51. *>
  52. *> N-K-L K L
  53. *> = K ( 0 A12 A13 ) if M-K-L < 0;
  54. *> M-K ( 0 0 A23 )
  55. *>
  56. *> N-K-L K L
  57. *> V**H*B*Q = L ( 0 0 B13 )
  58. *> P-L ( 0 0 0 )
  59. *>
  60. *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
  61. *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
  62. *> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
  63. *> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H.
  64. *>
  65. *> This decomposition is the preprocessing step for computing the
  66. *> Generalized Singular Value Decomposition (GSVD), see subroutine
  67. *> ZGGSVD.
  68. *> \endverbatim
  69. *
  70. * Arguments:
  71. * ==========
  72. *
  73. *> \param[in] JOBU
  74. *> \verbatim
  75. *> JOBU is CHARACTER*1
  76. *> = 'U': Unitary matrix U is computed;
  77. *> = 'N': U is not computed.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] JOBV
  81. *> \verbatim
  82. *> JOBV is CHARACTER*1
  83. *> = 'V': Unitary matrix V is computed;
  84. *> = 'N': V is not computed.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] JOBQ
  88. *> \verbatim
  89. *> JOBQ is CHARACTER*1
  90. *> = 'Q': Unitary matrix Q is computed;
  91. *> = 'N': Q is not computed.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] M
  95. *> \verbatim
  96. *> M is INTEGER
  97. *> The number of rows of the matrix A. M >= 0.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] P
  101. *> \verbatim
  102. *> P is INTEGER
  103. *> The number of rows of the matrix B. P >= 0.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] N
  107. *> \verbatim
  108. *> N is INTEGER
  109. *> The number of columns of the matrices A and B. N >= 0.
  110. *> \endverbatim
  111. *>
  112. *> \param[in,out] A
  113. *> \verbatim
  114. *> A is COMPLEX*16 array, dimension (LDA,N)
  115. *> On entry, the M-by-N matrix A.
  116. *> On exit, A contains the triangular (or trapezoidal) matrix
  117. *> described in the Purpose section.
  118. *> \endverbatim
  119. *>
  120. *> \param[in] LDA
  121. *> \verbatim
  122. *> LDA is INTEGER
  123. *> The leading dimension of the array A. LDA >= max(1,M).
  124. *> \endverbatim
  125. *>
  126. *> \param[in,out] B
  127. *> \verbatim
  128. *> B is COMPLEX*16 array, dimension (LDB,N)
  129. *> On entry, the P-by-N matrix B.
  130. *> On exit, B contains the triangular matrix described in
  131. *> the Purpose section.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] LDB
  135. *> \verbatim
  136. *> LDB is INTEGER
  137. *> The leading dimension of the array B. LDB >= max(1,P).
  138. *> \endverbatim
  139. *>
  140. *> \param[in] TOLA
  141. *> \verbatim
  142. *> TOLA is DOUBLE PRECISION
  143. *> \endverbatim
  144. *>
  145. *> \param[in] TOLB
  146. *> \verbatim
  147. *> TOLB is DOUBLE PRECISION
  148. *>
  149. *> TOLA and TOLB are the thresholds to determine the effective
  150. *> numerical rank of matrix B and a subblock of A. Generally,
  151. *> they are set to
  152. *> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
  153. *> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
  154. *> The size of TOLA and TOLB may affect the size of backward
  155. *> errors of the decomposition.
  156. *> \endverbatim
  157. *>
  158. *> \param[out] K
  159. *> \verbatim
  160. *> K is INTEGER
  161. *> \endverbatim
  162. *>
  163. *> \param[out] L
  164. *> \verbatim
  165. *> L is INTEGER
  166. *>
  167. *> On exit, K and L specify the dimension of the subblocks
  168. *> described in Purpose section.
  169. *> K + L = effective numerical rank of (A**H,B**H)**H.
  170. *> \endverbatim
  171. *>
  172. *> \param[out] U
  173. *> \verbatim
  174. *> U is COMPLEX*16 array, dimension (LDU,M)
  175. *> If JOBU = 'U', U contains the unitary matrix U.
  176. *> If JOBU = 'N', U is not referenced.
  177. *> \endverbatim
  178. *>
  179. *> \param[in] LDU
  180. *> \verbatim
  181. *> LDU is INTEGER
  182. *> The leading dimension of the array U. LDU >= max(1,M) if
  183. *> JOBU = 'U'; LDU >= 1 otherwise.
  184. *> \endverbatim
  185. *>
  186. *> \param[out] V
  187. *> \verbatim
  188. *> V is COMPLEX*16 array, dimension (LDV,P)
  189. *> If JOBV = 'V', V contains the unitary matrix V.
  190. *> If JOBV = 'N', V is not referenced.
  191. *> \endverbatim
  192. *>
  193. *> \param[in] LDV
  194. *> \verbatim
  195. *> LDV is INTEGER
  196. *> The leading dimension of the array V. LDV >= max(1,P) if
  197. *> JOBV = 'V'; LDV >= 1 otherwise.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] Q
  201. *> \verbatim
  202. *> Q is COMPLEX*16 array, dimension (LDQ,N)
  203. *> If JOBQ = 'Q', Q contains the unitary matrix Q.
  204. *> If JOBQ = 'N', Q is not referenced.
  205. *> \endverbatim
  206. *>
  207. *> \param[in] LDQ
  208. *> \verbatim
  209. *> LDQ is INTEGER
  210. *> The leading dimension of the array Q. LDQ >= max(1,N) if
  211. *> JOBQ = 'Q'; LDQ >= 1 otherwise.
  212. *> \endverbatim
  213. *>
  214. *> \param[out] IWORK
  215. *> \verbatim
  216. *> IWORK is INTEGER array, dimension (N)
  217. *> \endverbatim
  218. *>
  219. *> \param[out] RWORK
  220. *> \verbatim
  221. *> RWORK is DOUBLE PRECISION array, dimension (2*N)
  222. *> \endverbatim
  223. *>
  224. *> \param[out] TAU
  225. *> \verbatim
  226. *> TAU is COMPLEX*16 array, dimension (N)
  227. *> \endverbatim
  228. *>
  229. *> \param[out] WORK
  230. *> \verbatim
  231. *> WORK is COMPLEX*16 array, dimension (max(3*N,M,P))
  232. *> \endverbatim
  233. *>
  234. *> \param[out] INFO
  235. *> \verbatim
  236. *> INFO is INTEGER
  237. *> = 0: successful exit
  238. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  239. *> \endverbatim
  240. *
  241. * Authors:
  242. * ========
  243. *
  244. *> \author Univ. of Tennessee
  245. *> \author Univ. of California Berkeley
  246. *> \author Univ. of Colorado Denver
  247. *> \author NAG Ltd.
  248. *
  249. *> \ingroup complex16OTHERcomputational
  250. *
  251. *> \par Further Details:
  252. * =====================
  253. *>
  254. *> \verbatim
  255. *>
  256. *> The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization
  257. *> with column pivoting to detect the effective numerical rank of the
  258. *> a matrix. It may be replaced by a better rank determination strategy.
  259. *> \endverbatim
  260. *>
  261. * =====================================================================
  262. SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
  263. $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
  264. $ IWORK, RWORK, TAU, WORK, INFO )
  265. *
  266. * -- LAPACK computational routine --
  267. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  268. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  269. *
  270. * .. Scalar Arguments ..
  271. CHARACTER JOBQ, JOBU, JOBV
  272. INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  273. DOUBLE PRECISION TOLA, TOLB
  274. * ..
  275. * .. Array Arguments ..
  276. INTEGER IWORK( * )
  277. DOUBLE PRECISION RWORK( * )
  278. COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  279. $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
  280. * ..
  281. *
  282. * =====================================================================
  283. *
  284. * .. Parameters ..
  285. COMPLEX*16 CZERO, CONE
  286. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  287. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  288. * ..
  289. * .. Local Scalars ..
  290. LOGICAL FORWRD, WANTQ, WANTU, WANTV
  291. INTEGER I, J
  292. COMPLEX*16 T
  293. * ..
  294. * .. External Functions ..
  295. LOGICAL LSAME
  296. EXTERNAL LSAME
  297. * ..
  298. * .. External Subroutines ..
  299. EXTERNAL XERBLA, ZGEQPF, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT,
  300. $ ZLASET, ZUNG2R, ZUNM2R, ZUNMR2
  301. * ..
  302. * .. Intrinsic Functions ..
  303. INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
  304. * ..
  305. * .. Statement Functions ..
  306. DOUBLE PRECISION CABS1
  307. * ..
  308. * .. Statement Function definitions ..
  309. CABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) )
  310. * ..
  311. * .. Executable Statements ..
  312. *
  313. * Test the input parameters
  314. *
  315. WANTU = LSAME( JOBU, 'U' )
  316. WANTV = LSAME( JOBV, 'V' )
  317. WANTQ = LSAME( JOBQ, 'Q' )
  318. FORWRD = .TRUE.
  319. *
  320. INFO = 0
  321. IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  322. INFO = -1
  323. ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  324. INFO = -2
  325. ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  326. INFO = -3
  327. ELSE IF( M.LT.0 ) THEN
  328. INFO = -4
  329. ELSE IF( P.LT.0 ) THEN
  330. INFO = -5
  331. ELSE IF( N.LT.0 ) THEN
  332. INFO = -6
  333. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  334. INFO = -8
  335. ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  336. INFO = -10
  337. ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  338. INFO = -16
  339. ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  340. INFO = -18
  341. ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  342. INFO = -20
  343. END IF
  344. IF( INFO.NE.0 ) THEN
  345. CALL XERBLA( 'ZGGSVP', -INFO )
  346. RETURN
  347. END IF
  348. *
  349. * QR with column pivoting of B: B*P = V*( S11 S12 )
  350. * ( 0 0 )
  351. *
  352. DO 10 I = 1, N
  353. IWORK( I ) = 0
  354. 10 CONTINUE
  355. CALL ZGEQPF( P, N, B, LDB, IWORK, TAU, WORK, RWORK, INFO )
  356. *
  357. * Update A := A*P
  358. *
  359. CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK )
  360. *
  361. * Determine the effective rank of matrix B.
  362. *
  363. L = 0
  364. DO 20 I = 1, MIN( P, N )
  365. IF( CABS1( B( I, I ) ).GT.TOLB )
  366. $ L = L + 1
  367. 20 CONTINUE
  368. *
  369. IF( WANTV ) THEN
  370. *
  371. * Copy the details of V, and form V.
  372. *
  373. CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
  374. IF( P.GT.1 )
  375. $ CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
  376. $ LDV )
  377. CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
  378. END IF
  379. *
  380. * Clean up B
  381. *
  382. DO 40 J = 1, L - 1
  383. DO 30 I = J + 1, L
  384. B( I, J ) = CZERO
  385. 30 CONTINUE
  386. 40 CONTINUE
  387. IF( P.GT.L )
  388. $ CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
  389. *
  390. IF( WANTQ ) THEN
  391. *
  392. * Set Q = I and Update Q := Q*P
  393. *
  394. CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
  395. CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
  396. END IF
  397. *
  398. IF( P.GE.L .AND. N.NE.L ) THEN
  399. *
  400. * RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
  401. *
  402. CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO )
  403. *
  404. * Update A := A*Z**H
  405. *
  406. CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
  407. $ TAU, A, LDA, WORK, INFO )
  408. IF( WANTQ ) THEN
  409. *
  410. * Update Q := Q*Z**H
  411. *
  412. CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
  413. $ LDB, TAU, Q, LDQ, WORK, INFO )
  414. END IF
  415. *
  416. * Clean up B
  417. *
  418. CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
  419. DO 60 J = N - L + 1, N
  420. DO 50 I = J - N + L + 1, L
  421. B( I, J ) = CZERO
  422. 50 CONTINUE
  423. 60 CONTINUE
  424. *
  425. END IF
  426. *
  427. * Let N-L L
  428. * A = ( A11 A12 ) M,
  429. *
  430. * then the following does the complete QR decomposition of A11:
  431. *
  432. * A11 = U*( 0 T12 )*P1**H
  433. * ( 0 0 )
  434. *
  435. DO 70 I = 1, N - L
  436. IWORK( I ) = 0
  437. 70 CONTINUE
  438. CALL ZGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, RWORK, INFO )
  439. *
  440. * Determine the effective rank of A11
  441. *
  442. K = 0
  443. DO 80 I = 1, MIN( M, N-L )
  444. IF( CABS1( A( I, I ) ).GT.TOLA )
  445. $ K = K + 1
  446. 80 CONTINUE
  447. *
  448. * Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
  449. *
  450. CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
  451. $ A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
  452. *
  453. IF( WANTU ) THEN
  454. *
  455. * Copy the details of U, and form U
  456. *
  457. CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
  458. IF( M.GT.1 )
  459. $ CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
  460. $ LDU )
  461. CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
  462. END IF
  463. *
  464. IF( WANTQ ) THEN
  465. *
  466. * Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
  467. *
  468. CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
  469. END IF
  470. *
  471. * Clean up A: set the strictly lower triangular part of
  472. * A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
  473. *
  474. DO 100 J = 1, K - 1
  475. DO 90 I = J + 1, K
  476. A( I, J ) = CZERO
  477. 90 CONTINUE
  478. 100 CONTINUE
  479. IF( M.GT.K )
  480. $ CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
  481. *
  482. IF( N-L.GT.K ) THEN
  483. *
  484. * RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
  485. *
  486. CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
  487. *
  488. IF( WANTQ ) THEN
  489. *
  490. * Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
  491. *
  492. CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
  493. $ LDA, TAU, Q, LDQ, WORK, INFO )
  494. END IF
  495. *
  496. * Clean up A
  497. *
  498. CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
  499. DO 120 J = N - L - K + 1, N - L
  500. DO 110 I = J - N + L + K + 1, K
  501. A( I, J ) = CZERO
  502. 110 CONTINUE
  503. 120 CONTINUE
  504. *
  505. END IF
  506. *
  507. IF( M.GT.K ) THEN
  508. *
  509. * QR factorization of A( K+1:M,N-L+1:N )
  510. *
  511. CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
  512. *
  513. IF( WANTU ) THEN
  514. *
  515. * Update U(:,K+1:M) := U(:,K+1:M)*U1
  516. *
  517. CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
  518. $ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
  519. $ WORK, INFO )
  520. END IF
  521. *
  522. * Clean up
  523. *
  524. DO 140 J = N - L + 1, N
  525. DO 130 I = J - N + K + L + 1, M
  526. A( I, J ) = CZERO
  527. 130 CONTINUE
  528. 140 CONTINUE
  529. *
  530. END IF
  531. *
  532. RETURN
  533. *
  534. * End of ZGGSVP
  535. *
  536. END