You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528
  1. *> \brief <b> ZGEGS computes the eigenvalues, Schur form, and, optionally, the left and or/right Schur vectors of a complex matrix pair (A,B)</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGEGS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgegs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgegs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgegs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
  22. * VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBVSL, JOBVSR
  27. * INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION RWORK( * )
  31. * COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  32. * $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
  33. * $ WORK( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> This routine is deprecated and has been replaced by routine ZGGES.
  43. *>
  44. *> ZGEGS computes the eigenvalues, Schur form, and, optionally, the
  45. *> left and or/right Schur vectors of a complex matrix pair (A,B).
  46. *> Given two square matrices A and B, the generalized Schur
  47. *> factorization has the form
  48. *>
  49. *> A = Q*S*Z**H, B = Q*T*Z**H
  50. *>
  51. *> where Q and Z are unitary matrices and S and T are upper triangular.
  52. *> The columns of Q are the left Schur vectors
  53. *> and the columns of Z are the right Schur vectors.
  54. *>
  55. *> If only the eigenvalues of (A,B) are needed, the driver routine
  56. *> ZGEGV should be used instead. See ZGEGV for a description of the
  57. *> eigenvalues of the generalized nonsymmetric eigenvalue problem
  58. *> (GNEP).
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] JOBVSL
  65. *> \verbatim
  66. *> JOBVSL is CHARACTER*1
  67. *> = 'N': do not compute the left Schur vectors;
  68. *> = 'V': compute the left Schur vectors (returned in VSL).
  69. *> \endverbatim
  70. *>
  71. *> \param[in] JOBVSR
  72. *> \verbatim
  73. *> JOBVSR is CHARACTER*1
  74. *> = 'N': do not compute the right Schur vectors;
  75. *> = 'V': compute the right Schur vectors (returned in VSR).
  76. *> \endverbatim
  77. *>
  78. *> \param[in] N
  79. *> \verbatim
  80. *> N is INTEGER
  81. *> The order of the matrices A, B, VSL, and VSR. N >= 0.
  82. *> \endverbatim
  83. *>
  84. *> \param[in,out] A
  85. *> \verbatim
  86. *> A is COMPLEX*16 array, dimension (LDA, N)
  87. *> On entry, the matrix A.
  88. *> On exit, the upper triangular matrix S from the generalized
  89. *> Schur factorization.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDA
  93. *> \verbatim
  94. *> LDA is INTEGER
  95. *> The leading dimension of A. LDA >= max(1,N).
  96. *> \endverbatim
  97. *>
  98. *> \param[in,out] B
  99. *> \verbatim
  100. *> B is COMPLEX*16 array, dimension (LDB, N)
  101. *> On entry, the matrix B.
  102. *> On exit, the upper triangular matrix T from the generalized
  103. *> Schur factorization.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDB
  107. *> \verbatim
  108. *> LDB is INTEGER
  109. *> The leading dimension of B. LDB >= max(1,N).
  110. *> \endverbatim
  111. *>
  112. *> \param[out] ALPHA
  113. *> \verbatim
  114. *> ALPHA is COMPLEX*16 array, dimension (N)
  115. *> The complex scalars alpha that define the eigenvalues of
  116. *> GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur
  117. *> form of A.
  118. *> \endverbatim
  119. *>
  120. *> \param[out] BETA
  121. *> \verbatim
  122. *> BETA is COMPLEX*16 array, dimension (N)
  123. *> The non-negative real scalars beta that define the
  124. *> eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element
  125. *> of the triangular factor T.
  126. *>
  127. *> Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
  128. *> represent the j-th eigenvalue of the matrix pair (A,B), in
  129. *> one of the forms lambda = alpha/beta or mu = beta/alpha.
  130. *> Since either lambda or mu may overflow, they should not,
  131. *> in general, be computed.
  132. *> \endverbatim
  133. *>
  134. *> \param[out] VSL
  135. *> \verbatim
  136. *> VSL is COMPLEX*16 array, dimension (LDVSL,N)
  137. *> If JOBVSL = 'V', the matrix of left Schur vectors Q.
  138. *> Not referenced if JOBVSL = 'N'.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDVSL
  142. *> \verbatim
  143. *> LDVSL is INTEGER
  144. *> The leading dimension of the matrix VSL. LDVSL >= 1, and
  145. *> if JOBVSL = 'V', LDVSL >= N.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] VSR
  149. *> \verbatim
  150. *> VSR is COMPLEX*16 array, dimension (LDVSR,N)
  151. *> If JOBVSR = 'V', the matrix of right Schur vectors Z.
  152. *> Not referenced if JOBVSR = 'N'.
  153. *> \endverbatim
  154. *>
  155. *> \param[in] LDVSR
  156. *> \verbatim
  157. *> LDVSR is INTEGER
  158. *> The leading dimension of the matrix VSR. LDVSR >= 1, and
  159. *> if JOBVSR = 'V', LDVSR >= N.
  160. *> \endverbatim
  161. *>
  162. *> \param[out] WORK
  163. *> \verbatim
  164. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  165. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  166. *> \endverbatim
  167. *>
  168. *> \param[in] LWORK
  169. *> \verbatim
  170. *> LWORK is INTEGER
  171. *> The dimension of the array WORK. LWORK >= max(1,2*N).
  172. *> For good performance, LWORK must generally be larger.
  173. *> To compute the optimal value of LWORK, call ILAENV to get
  174. *> blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.) Then compute:
  175. *> NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR;
  176. *> the optimal LWORK is N*(NB+1).
  177. *>
  178. *> If LWORK = -1, then a workspace query is assumed; the routine
  179. *> only calculates the optimal size of the WORK array, returns
  180. *> this value as the first entry of the WORK array, and no error
  181. *> message related to LWORK is issued by XERBLA.
  182. *> \endverbatim
  183. *>
  184. *> \param[out] RWORK
  185. *> \verbatim
  186. *> RWORK is DOUBLE PRECISION array, dimension (3*N)
  187. *> \endverbatim
  188. *>
  189. *> \param[out] INFO
  190. *> \verbatim
  191. *> INFO is INTEGER
  192. *> = 0: successful exit
  193. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  194. *> =1,...,N:
  195. *> The QZ iteration failed. (A,B) are not in Schur
  196. *> form, but ALPHA(j) and BETA(j) should be correct for
  197. *> j=INFO+1,...,N.
  198. *> > N: errors that usually indicate LAPACK problems:
  199. *> =N+1: error return from ZGGBAL
  200. *> =N+2: error return from ZGEQRF
  201. *> =N+3: error return from ZUNMQR
  202. *> =N+4: error return from ZUNGQR
  203. *> =N+5: error return from ZGGHRD
  204. *> =N+6: error return from ZHGEQZ (other than failed
  205. *> iteration)
  206. *> =N+7: error return from ZGGBAK (computing VSL)
  207. *> =N+8: error return from ZGGBAK (computing VSR)
  208. *> =N+9: error return from ZLASCL (various places)
  209. *> \endverbatim
  210. *
  211. * Authors:
  212. * ========
  213. *
  214. *> \author Univ. of Tennessee
  215. *> \author Univ. of California Berkeley
  216. *> \author Univ. of Colorado Denver
  217. *> \author NAG Ltd.
  218. *
  219. *> \ingroup complex16GEeigen
  220. *
  221. * =====================================================================
  222. SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
  223. $ VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
  224. $ INFO )
  225. *
  226. * -- LAPACK driver routine --
  227. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  228. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  229. *
  230. * .. Scalar Arguments ..
  231. CHARACTER JOBVSL, JOBVSR
  232. INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
  233. * ..
  234. * .. Array Arguments ..
  235. DOUBLE PRECISION RWORK( * )
  236. COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  237. $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
  238. $ WORK( * )
  239. * ..
  240. *
  241. * =====================================================================
  242. *
  243. * .. Parameters ..
  244. DOUBLE PRECISION ZERO, ONE
  245. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  246. COMPLEX*16 CZERO, CONE
  247. PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
  248. $ CONE = ( 1.0D0, 0.0D0 ) )
  249. * ..
  250. * .. Local Scalars ..
  251. LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
  252. INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
  253. $ IRIGHT, IROWS, IRWORK, ITAU, IWORK, LOPT,
  254. $ LWKMIN, LWKOPT, NB, NB1, NB2, NB3
  255. DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  256. $ SAFMIN, SMLNUM
  257. * ..
  258. * .. External Subroutines ..
  259. EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ,
  260. $ ZLACPY, ZLASCL, ZLASET, ZUNGQR, ZUNMQR
  261. * ..
  262. * .. External Functions ..
  263. LOGICAL LSAME
  264. INTEGER ILAENV
  265. DOUBLE PRECISION DLAMCH, ZLANGE
  266. EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
  267. * ..
  268. * .. Intrinsic Functions ..
  269. INTRINSIC INT, MAX
  270. * ..
  271. * .. Executable Statements ..
  272. *
  273. * Decode the input arguments
  274. *
  275. IF( LSAME( JOBVSL, 'N' ) ) THEN
  276. IJOBVL = 1
  277. ILVSL = .FALSE.
  278. ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  279. IJOBVL = 2
  280. ILVSL = .TRUE.
  281. ELSE
  282. IJOBVL = -1
  283. ILVSL = .FALSE.
  284. END IF
  285. *
  286. IF( LSAME( JOBVSR, 'N' ) ) THEN
  287. IJOBVR = 1
  288. ILVSR = .FALSE.
  289. ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  290. IJOBVR = 2
  291. ILVSR = .TRUE.
  292. ELSE
  293. IJOBVR = -1
  294. ILVSR = .FALSE.
  295. END IF
  296. *
  297. * Test the input arguments
  298. *
  299. LWKMIN = MAX( 2*N, 1 )
  300. LWKOPT = LWKMIN
  301. WORK( 1 ) = LWKOPT
  302. LQUERY = ( LWORK.EQ.-1 )
  303. INFO = 0
  304. IF( IJOBVL.LE.0 ) THEN
  305. INFO = -1
  306. ELSE IF( IJOBVR.LE.0 ) THEN
  307. INFO = -2
  308. ELSE IF( N.LT.0 ) THEN
  309. INFO = -3
  310. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  311. INFO = -5
  312. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  313. INFO = -7
  314. ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  315. INFO = -11
  316. ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  317. INFO = -13
  318. ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  319. INFO = -15
  320. END IF
  321. *
  322. IF( INFO.EQ.0 ) THEN
  323. NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, N, -1, -1 )
  324. NB2 = ILAENV( 1, 'ZUNMQR', ' ', N, N, N, -1 )
  325. NB3 = ILAENV( 1, 'ZUNGQR', ' ', N, N, N, -1 )
  326. NB = MAX( NB1, NB2, NB3 )
  327. LOPT = N*( NB+1 )
  328. WORK( 1 ) = LOPT
  329. END IF
  330. *
  331. IF( INFO.NE.0 ) THEN
  332. CALL XERBLA( 'ZGEGS ', -INFO )
  333. RETURN
  334. ELSE IF( LQUERY ) THEN
  335. RETURN
  336. END IF
  337. *
  338. * Quick return if possible
  339. *
  340. IF( N.EQ.0 )
  341. $ RETURN
  342. *
  343. * Get machine constants
  344. *
  345. EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
  346. SAFMIN = DLAMCH( 'S' )
  347. SMLNUM = N*SAFMIN / EPS
  348. BIGNUM = ONE / SMLNUM
  349. *
  350. * Scale A if max element outside range [SMLNUM,BIGNUM]
  351. *
  352. ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  353. ILASCL = .FALSE.
  354. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  355. ANRMTO = SMLNUM
  356. ILASCL = .TRUE.
  357. ELSE IF( ANRM.GT.BIGNUM ) THEN
  358. ANRMTO = BIGNUM
  359. ILASCL = .TRUE.
  360. END IF
  361. *
  362. IF( ILASCL ) THEN
  363. CALL ZLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
  364. IF( IINFO.NE.0 ) THEN
  365. INFO = N + 9
  366. RETURN
  367. END IF
  368. END IF
  369. *
  370. * Scale B if max element outside range [SMLNUM,BIGNUM]
  371. *
  372. BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  373. ILBSCL = .FALSE.
  374. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  375. BNRMTO = SMLNUM
  376. ILBSCL = .TRUE.
  377. ELSE IF( BNRM.GT.BIGNUM ) THEN
  378. BNRMTO = BIGNUM
  379. ILBSCL = .TRUE.
  380. END IF
  381. *
  382. IF( ILBSCL ) THEN
  383. CALL ZLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
  384. IF( IINFO.NE.0 ) THEN
  385. INFO = N + 9
  386. RETURN
  387. END IF
  388. END IF
  389. *
  390. * Permute the matrix to make it more nearly triangular
  391. *
  392. ILEFT = 1
  393. IRIGHT = N + 1
  394. IRWORK = IRIGHT + N
  395. IWORK = 1
  396. CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  397. $ RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
  398. IF( IINFO.NE.0 ) THEN
  399. INFO = N + 1
  400. GO TO 10
  401. END IF
  402. *
  403. * Reduce B to triangular form, and initialize VSL and/or VSR
  404. *
  405. IROWS = IHI + 1 - ILO
  406. ICOLS = N + 1 - ILO
  407. ITAU = IWORK
  408. IWORK = ITAU + IROWS
  409. CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  410. $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
  411. IF( IINFO.GE.0 )
  412. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  413. IF( IINFO.NE.0 ) THEN
  414. INFO = N + 2
  415. GO TO 10
  416. END IF
  417. *
  418. CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  419. $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
  420. $ LWORK+1-IWORK, IINFO )
  421. IF( IINFO.GE.0 )
  422. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  423. IF( IINFO.NE.0 ) THEN
  424. INFO = N + 3
  425. GO TO 10
  426. END IF
  427. *
  428. IF( ILVSL ) THEN
  429. CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
  430. CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  431. $ VSL( ILO+1, ILO ), LDVSL )
  432. CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  433. $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
  434. $ IINFO )
  435. IF( IINFO.GE.0 )
  436. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  437. IF( IINFO.NE.0 ) THEN
  438. INFO = N + 4
  439. GO TO 10
  440. END IF
  441. END IF
  442. *
  443. IF( ILVSR )
  444. $ CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
  445. *
  446. * Reduce to generalized Hessenberg form
  447. *
  448. CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  449. $ LDVSL, VSR, LDVSR, IINFO )
  450. IF( IINFO.NE.0 ) THEN
  451. INFO = N + 5
  452. GO TO 10
  453. END IF
  454. *
  455. * Perform QZ algorithm, computing Schur vectors if desired
  456. *
  457. IWORK = ITAU
  458. CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  459. $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWORK ),
  460. $ LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
  461. IF( IINFO.GE.0 )
  462. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  463. IF( IINFO.NE.0 ) THEN
  464. IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
  465. INFO = IINFO
  466. ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
  467. INFO = IINFO - N
  468. ELSE
  469. INFO = N + 6
  470. END IF
  471. GO TO 10
  472. END IF
  473. *
  474. * Apply permutation to VSL and VSR
  475. *
  476. IF( ILVSL ) THEN
  477. CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  478. $ RWORK( IRIGHT ), N, VSL, LDVSL, IINFO )
  479. IF( IINFO.NE.0 ) THEN
  480. INFO = N + 7
  481. GO TO 10
  482. END IF
  483. END IF
  484. IF( ILVSR ) THEN
  485. CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  486. $ RWORK( IRIGHT ), N, VSR, LDVSR, IINFO )
  487. IF( IINFO.NE.0 ) THEN
  488. INFO = N + 8
  489. GO TO 10
  490. END IF
  491. END IF
  492. *
  493. * Undo scaling
  494. *
  495. IF( ILASCL ) THEN
  496. CALL ZLASCL( 'U', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
  497. IF( IINFO.NE.0 ) THEN
  498. INFO = N + 9
  499. RETURN
  500. END IF
  501. CALL ZLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHA, N, IINFO )
  502. IF( IINFO.NE.0 ) THEN
  503. INFO = N + 9
  504. RETURN
  505. END IF
  506. END IF
  507. *
  508. IF( ILBSCL ) THEN
  509. CALL ZLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
  510. IF( IINFO.NE.0 ) THEN
  511. INFO = N + 9
  512. RETURN
  513. END IF
  514. CALL ZLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
  515. IF( IINFO.NE.0 ) THEN
  516. INFO = N + 9
  517. RETURN
  518. END IF
  519. END IF
  520. *
  521. 10 CONTINUE
  522. WORK( 1 ) = LWKOPT
  523. *
  524. RETURN
  525. *
  526. * End of ZGEGS
  527. *
  528. END