You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgtt05.f 9.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. *> \brief \b ZGTT05
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZGTT05( TRANS, N, NRHS, DL, D, DU, B, LDB, X, LDX,
  12. * XACT, LDXACT, FERR, BERR, RESLTS )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER TRANS
  16. * INTEGER LDB, LDX, LDXACT, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
  20. * COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ),
  21. * $ X( LDX, * ), XACT( LDXACT, * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> ZGTT05 tests the error bounds from iterative refinement for the
  31. *> computed solution to a system of equations A*X = B, where A is a
  32. *> general tridiagonal matrix of order n and op(A) = A or A**T,
  33. *> depending on TRANS.
  34. *>
  35. *> RESLTS(1) = test of the error bound
  36. *> = norm(X - XACT) / ( norm(X) * FERR )
  37. *>
  38. *> A large value is returned if this ratio is not less than one.
  39. *>
  40. *> RESLTS(2) = residual from the iterative refinement routine
  41. *> = the maximum of BERR / ( NZ*EPS + (*) ), where
  42. *> (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
  43. *> and NZ = max. number of nonzeros in any row of A, plus 1
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] TRANS
  50. *> \verbatim
  51. *> TRANS is CHARACTER*1
  52. *> Specifies the form of the system of equations.
  53. *> = 'N': A * X = B (No transpose)
  54. *> = 'T': A**T * X = B (Transpose)
  55. *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The number of rows of the matrices X and XACT. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] NRHS
  65. *> \verbatim
  66. *> NRHS is INTEGER
  67. *> The number of columns of the matrices X and XACT. NRHS >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] DL
  71. *> \verbatim
  72. *> DL is COMPLEX*16 array, dimension (N-1)
  73. *> The (n-1) sub-diagonal elements of A.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] D
  77. *> \verbatim
  78. *> D is COMPLEX*16 array, dimension (N)
  79. *> The diagonal elements of A.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] DU
  83. *> \verbatim
  84. *> DU is COMPLEX*16 array, dimension (N-1)
  85. *> The (n-1) super-diagonal elements of A.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] B
  89. *> \verbatim
  90. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  91. *> The right hand side vectors for the system of linear
  92. *> equations.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDB
  96. *> \verbatim
  97. *> LDB is INTEGER
  98. *> The leading dimension of the array B. LDB >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] X
  102. *> \verbatim
  103. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  104. *> The computed solution vectors. Each vector is stored as a
  105. *> column of the matrix X.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDX
  109. *> \verbatim
  110. *> LDX is INTEGER
  111. *> The leading dimension of the array X. LDX >= max(1,N).
  112. *> \endverbatim
  113. *>
  114. *> \param[in] XACT
  115. *> \verbatim
  116. *> XACT is COMPLEX*16 array, dimension (LDX,NRHS)
  117. *> The exact solution vectors. Each vector is stored as a
  118. *> column of the matrix XACT.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDXACT
  122. *> \verbatim
  123. *> LDXACT is INTEGER
  124. *> The leading dimension of the array XACT. LDXACT >= max(1,N).
  125. *> \endverbatim
  126. *>
  127. *> \param[in] FERR
  128. *> \verbatim
  129. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  130. *> The estimated forward error bounds for each solution vector
  131. *> X. If XTRUE is the true solution, FERR bounds the magnitude
  132. *> of the largest entry in (X - XTRUE) divided by the magnitude
  133. *> of the largest entry in X.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] BERR
  137. *> \verbatim
  138. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  139. *> The componentwise relative backward error of each solution
  140. *> vector (i.e., the smallest relative change in any entry of A
  141. *> or B that makes X an exact solution).
  142. *> \endverbatim
  143. *>
  144. *> \param[out] RESLTS
  145. *> \verbatim
  146. *> RESLTS is DOUBLE PRECISION array, dimension (2)
  147. *> The maximum over the NRHS solution vectors of the ratios:
  148. *> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
  149. *> RESLTS(2) = BERR / ( NZ*EPS + (*) )
  150. *> \endverbatim
  151. *
  152. * Authors:
  153. * ========
  154. *
  155. *> \author Univ. of Tennessee
  156. *> \author Univ. of California Berkeley
  157. *> \author Univ. of Colorado Denver
  158. *> \author NAG Ltd.
  159. *
  160. *> \ingroup complex16_lin
  161. *
  162. * =====================================================================
  163. SUBROUTINE ZGTT05( TRANS, N, NRHS, DL, D, DU, B, LDB, X, LDX,
  164. $ XACT, LDXACT, FERR, BERR, RESLTS )
  165. *
  166. * -- LAPACK test routine --
  167. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  168. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  169. *
  170. * .. Scalar Arguments ..
  171. CHARACTER TRANS
  172. INTEGER LDB, LDX, LDXACT, N, NRHS
  173. * ..
  174. * .. Array Arguments ..
  175. DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
  176. COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ),
  177. $ X( LDX, * ), XACT( LDXACT, * )
  178. * ..
  179. *
  180. * =====================================================================
  181. *
  182. * .. Parameters ..
  183. DOUBLE PRECISION ZERO, ONE
  184. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  185. * ..
  186. * .. Local Scalars ..
  187. LOGICAL NOTRAN
  188. INTEGER I, IMAX, J, K, NZ
  189. DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
  190. COMPLEX*16 ZDUM
  191. * ..
  192. * .. External Functions ..
  193. LOGICAL LSAME
  194. INTEGER IZAMAX
  195. DOUBLE PRECISION DLAMCH
  196. EXTERNAL LSAME, IZAMAX, DLAMCH
  197. * ..
  198. * .. Intrinsic Functions ..
  199. INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
  200. * ..
  201. * .. Statement Functions ..
  202. DOUBLE PRECISION CABS1
  203. * ..
  204. * .. Statement Function definitions ..
  205. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  206. * ..
  207. * .. Executable Statements ..
  208. *
  209. * Quick exit if N = 0 or NRHS = 0.
  210. *
  211. IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
  212. RESLTS( 1 ) = ZERO
  213. RESLTS( 2 ) = ZERO
  214. RETURN
  215. END IF
  216. *
  217. EPS = DLAMCH( 'Epsilon' )
  218. UNFL = DLAMCH( 'Safe minimum' )
  219. OVFL = ONE / UNFL
  220. NOTRAN = LSAME( TRANS, 'N' )
  221. NZ = 4
  222. *
  223. * Test 1: Compute the maximum of
  224. * norm(X - XACT) / ( norm(X) * FERR )
  225. * over all the vectors X and XACT using the infinity-norm.
  226. *
  227. ERRBND = ZERO
  228. DO 30 J = 1, NRHS
  229. IMAX = IZAMAX( N, X( 1, J ), 1 )
  230. XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
  231. DIFF = ZERO
  232. DO 10 I = 1, N
  233. DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
  234. 10 CONTINUE
  235. *
  236. IF( XNORM.GT.ONE ) THEN
  237. GO TO 20
  238. ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
  239. GO TO 20
  240. ELSE
  241. ERRBND = ONE / EPS
  242. GO TO 30
  243. END IF
  244. *
  245. 20 CONTINUE
  246. IF( DIFF / XNORM.LE.FERR( J ) ) THEN
  247. ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
  248. ELSE
  249. ERRBND = ONE / EPS
  250. END IF
  251. 30 CONTINUE
  252. RESLTS( 1 ) = ERRBND
  253. *
  254. * Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
  255. * (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
  256. *
  257. DO 60 K = 1, NRHS
  258. IF( NOTRAN ) THEN
  259. IF( N.EQ.1 ) THEN
  260. AXBI = CABS1( B( 1, K ) ) +
  261. $ CABS1( D( 1 ) )*CABS1( X( 1, K ) )
  262. ELSE
  263. AXBI = CABS1( B( 1, K ) ) +
  264. $ CABS1( D( 1 ) )*CABS1( X( 1, K ) ) +
  265. $ CABS1( DU( 1 ) )*CABS1( X( 2, K ) )
  266. DO 40 I = 2, N - 1
  267. TMP = CABS1( B( I, K ) ) +
  268. $ CABS1( DL( I-1 ) )*CABS1( X( I-1, K ) ) +
  269. $ CABS1( D( I ) )*CABS1( X( I, K ) ) +
  270. $ CABS1( DU( I ) )*CABS1( X( I+1, K ) )
  271. AXBI = MIN( AXBI, TMP )
  272. 40 CONTINUE
  273. TMP = CABS1( B( N, K ) ) + CABS1( DL( N-1 ) )*
  274. $ CABS1( X( N-1, K ) ) + CABS1( D( N ) )*
  275. $ CABS1( X( N, K ) )
  276. AXBI = MIN( AXBI, TMP )
  277. END IF
  278. ELSE
  279. IF( N.EQ.1 ) THEN
  280. AXBI = CABS1( B( 1, K ) ) +
  281. $ CABS1( D( 1 ) )*CABS1( X( 1, K ) )
  282. ELSE
  283. AXBI = CABS1( B( 1, K ) ) +
  284. $ CABS1( D( 1 ) )*CABS1( X( 1, K ) ) +
  285. $ CABS1( DL( 1 ) )*CABS1( X( 2, K ) )
  286. DO 50 I = 2, N - 1
  287. TMP = CABS1( B( I, K ) ) +
  288. $ CABS1( DU( I-1 ) )*CABS1( X( I-1, K ) ) +
  289. $ CABS1( D( I ) )*CABS1( X( I, K ) ) +
  290. $ CABS1( DL( I ) )*CABS1( X( I+1, K ) )
  291. AXBI = MIN( AXBI, TMP )
  292. 50 CONTINUE
  293. TMP = CABS1( B( N, K ) ) + CABS1( DU( N-1 ) )*
  294. $ CABS1( X( N-1, K ) ) + CABS1( D( N ) )*
  295. $ CABS1( X( N, K ) )
  296. AXBI = MIN( AXBI, TMP )
  297. END IF
  298. END IF
  299. TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
  300. IF( K.EQ.1 ) THEN
  301. RESLTS( 2 ) = TMP
  302. ELSE
  303. RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
  304. END IF
  305. 60 CONTINUE
  306. *
  307. RETURN
  308. *
  309. * End of ZGTT05
  310. *
  311. END