You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zdrvsg2stg.f 50 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379
  1. *> \brief \b ZDRVSG2STG
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
  13. * BB, AP, BP, WORK, NWORK, RWORK, LRWORK,
  14. * IWORK, LIWORK, RESULT, INFO )
  15. *
  16. * IMPLICIT NONE
  17. *
  18. * .. Scalar Arguments ..
  19. * INTEGER INFO, LDA, LDB, LDZ, LIWORK, LRWORK, NOUNIT,
  20. * $ NSIZES, NTYPES, NWORK
  21. * DOUBLE PRECISION THRESH
  22. * ..
  23. * .. Array Arguments ..
  24. * LOGICAL DOTYPE( * )
  25. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  26. * DOUBLE PRECISION D( * ), RESULT( * ), RWORK( * )
  27. * COMPLEX*16 A( LDA, * ), AB( LDA, * ), AP( * ),
  28. * $ B( LDB, * ), BB( LDB, * ), BP( * ), WORK( * ),
  29. * $ Z( LDZ, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZDRVSG2STG checks the complex Hermitian generalized eigenproblem
  39. *> drivers.
  40. *>
  41. *> ZHEGV computes all eigenvalues and, optionally,
  42. *> eigenvectors of a complex Hermitian-definite generalized
  43. *> eigenproblem.
  44. *>
  45. *> ZHEGVD computes all eigenvalues and, optionally,
  46. *> eigenvectors of a complex Hermitian-definite generalized
  47. *> eigenproblem using a divide and conquer algorithm.
  48. *>
  49. *> ZHEGVX computes selected eigenvalues and, optionally,
  50. *> eigenvectors of a complex Hermitian-definite generalized
  51. *> eigenproblem.
  52. *>
  53. *> ZHPGV computes all eigenvalues and, optionally,
  54. *> eigenvectors of a complex Hermitian-definite generalized
  55. *> eigenproblem in packed storage.
  56. *>
  57. *> ZHPGVD computes all eigenvalues and, optionally,
  58. *> eigenvectors of a complex Hermitian-definite generalized
  59. *> eigenproblem in packed storage using a divide and
  60. *> conquer algorithm.
  61. *>
  62. *> ZHPGVX computes selected eigenvalues and, optionally,
  63. *> eigenvectors of a complex Hermitian-definite generalized
  64. *> eigenproblem in packed storage.
  65. *>
  66. *> ZHBGV computes all eigenvalues and, optionally,
  67. *> eigenvectors of a complex Hermitian-definite banded
  68. *> generalized eigenproblem.
  69. *>
  70. *> ZHBGVD computes all eigenvalues and, optionally,
  71. *> eigenvectors of a complex Hermitian-definite banded
  72. *> generalized eigenproblem using a divide and conquer
  73. *> algorithm.
  74. *>
  75. *> ZHBGVX computes selected eigenvalues and, optionally,
  76. *> eigenvectors of a complex Hermitian-definite banded
  77. *> generalized eigenproblem.
  78. *>
  79. *> When ZDRVSG2STG is called, a number of matrix "sizes" ("n's") and a
  80. *> number of matrix "types" are specified. For each size ("n")
  81. *> and each type of matrix, one matrix A of the given type will be
  82. *> generated; a random well-conditioned matrix B is also generated
  83. *> and the pair (A,B) is used to test the drivers.
  84. *>
  85. *> For each pair (A,B), the following tests are performed:
  86. *>
  87. *> (1) ZHEGV with ITYPE = 1 and UPLO ='U':
  88. *>
  89. *> | A Z - B Z D | / ( |A| |Z| n ulp )
  90. *> | D - D2 | / ( |D| ulp ) where D is computed by
  91. *> ZHEGV and D2 is computed by
  92. *> ZHEGV_2STAGE. This test is
  93. *> only performed for DSYGV
  94. *>
  95. *> (2) as (1) but calling ZHPGV
  96. *> (3) as (1) but calling ZHBGV
  97. *> (4) as (1) but with UPLO = 'L'
  98. *> (5) as (4) but calling ZHPGV
  99. *> (6) as (4) but calling ZHBGV
  100. *>
  101. *> (7) ZHEGV with ITYPE = 2 and UPLO ='U':
  102. *>
  103. *> | A B Z - Z D | / ( |A| |Z| n ulp )
  104. *>
  105. *> (8) as (7) but calling ZHPGV
  106. *> (9) as (7) but with UPLO = 'L'
  107. *> (10) as (9) but calling ZHPGV
  108. *>
  109. *> (11) ZHEGV with ITYPE = 3 and UPLO ='U':
  110. *>
  111. *> | B A Z - Z D | / ( |A| |Z| n ulp )
  112. *>
  113. *> (12) as (11) but calling ZHPGV
  114. *> (13) as (11) but with UPLO = 'L'
  115. *> (14) as (13) but calling ZHPGV
  116. *>
  117. *> ZHEGVD, ZHPGVD and ZHBGVD performed the same 14 tests.
  118. *>
  119. *> ZHEGVX, ZHPGVX and ZHBGVX performed the above 14 tests with
  120. *> the parameter RANGE = 'A', 'N' and 'I', respectively.
  121. *>
  122. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  123. *> each element NN(j) specifies one size.
  124. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  125. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  126. *> This type is used for the matrix A which has half-bandwidth KA.
  127. *> B is generated as a well-conditioned positive definite matrix
  128. *> with half-bandwidth KB (<= KA).
  129. *> Currently, the list of possible types for A is:
  130. *>
  131. *> (1) The zero matrix.
  132. *> (2) The identity matrix.
  133. *>
  134. *> (3) A diagonal matrix with evenly spaced entries
  135. *> 1, ..., ULP and random signs.
  136. *> (ULP = (first number larger than 1) - 1 )
  137. *> (4) A diagonal matrix with geometrically spaced entries
  138. *> 1, ..., ULP and random signs.
  139. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  140. *> and random signs.
  141. *>
  142. *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
  143. *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
  144. *>
  145. *> (8) A matrix of the form U* D U, where U is unitary and
  146. *> D has evenly spaced entries 1, ..., ULP with random signs
  147. *> on the diagonal.
  148. *>
  149. *> (9) A matrix of the form U* D U, where U is unitary and
  150. *> D has geometrically spaced entries 1, ..., ULP with random
  151. *> signs on the diagonal.
  152. *>
  153. *> (10) A matrix of the form U* D U, where U is unitary and
  154. *> D has "clustered" entries 1, ULP,..., ULP with random
  155. *> signs on the diagonal.
  156. *>
  157. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  158. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  159. *>
  160. *> (13) Hermitian matrix with random entries chosen from (-1,1).
  161. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  162. *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
  163. *>
  164. *> (16) Same as (8), but with KA = 1 and KB = 1
  165. *> (17) Same as (8), but with KA = 2 and KB = 1
  166. *> (18) Same as (8), but with KA = 2 and KB = 2
  167. *> (19) Same as (8), but with KA = 3 and KB = 1
  168. *> (20) Same as (8), but with KA = 3 and KB = 2
  169. *> (21) Same as (8), but with KA = 3 and KB = 3
  170. *> \endverbatim
  171. *
  172. * Arguments:
  173. * ==========
  174. *
  175. *> \verbatim
  176. *> NSIZES INTEGER
  177. *> The number of sizes of matrices to use. If it is zero,
  178. *> ZDRVSG2STG does nothing. It must be at least zero.
  179. *> Not modified.
  180. *>
  181. *> NN INTEGER array, dimension (NSIZES)
  182. *> An array containing the sizes to be used for the matrices.
  183. *> Zero values will be skipped. The values must be at least
  184. *> zero.
  185. *> Not modified.
  186. *>
  187. *> NTYPES INTEGER
  188. *> The number of elements in DOTYPE. If it is zero, ZDRVSG2STG
  189. *> does nothing. It must be at least zero. If it is MAXTYP+1
  190. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  191. *> defined, which is to use whatever matrix is in A. This
  192. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  193. *> DOTYPE(MAXTYP+1) is .TRUE. .
  194. *> Not modified.
  195. *>
  196. *> DOTYPE LOGICAL array, dimension (NTYPES)
  197. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  198. *> matrix of that size and of type j will be generated.
  199. *> If NTYPES is smaller than the maximum number of types
  200. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  201. *> MAXTYP will not be generated. If NTYPES is larger
  202. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  203. *> will be ignored.
  204. *> Not modified.
  205. *>
  206. *> ISEED INTEGER array, dimension (4)
  207. *> On entry ISEED specifies the seed of the random number
  208. *> generator. The array elements should be between 0 and 4095;
  209. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  210. *> be odd. The random number generator uses a linear
  211. *> congruential sequence limited to small integers, and so
  212. *> should produce machine independent random numbers. The
  213. *> values of ISEED are changed on exit, and can be used in the
  214. *> next call to ZDRVSG2STG to continue the same random number
  215. *> sequence.
  216. *> Modified.
  217. *>
  218. *> THRESH DOUBLE PRECISION
  219. *> A test will count as "failed" if the "error", computed as
  220. *> described above, exceeds THRESH. Note that the error
  221. *> is scaled to be O(1), so THRESH should be a reasonably
  222. *> small multiple of 1, e.g., 10 or 100. In particular,
  223. *> it should not depend on the precision (single vs. double)
  224. *> or the size of the matrix. It must be at least zero.
  225. *> Not modified.
  226. *>
  227. *> NOUNIT INTEGER
  228. *> The FORTRAN unit number for printing out error messages
  229. *> (e.g., if a routine returns IINFO not equal to 0.)
  230. *> Not modified.
  231. *>
  232. *> A COMPLEX*16 array, dimension (LDA , max(NN))
  233. *> Used to hold the matrix whose eigenvalues are to be
  234. *> computed. On exit, A contains the last matrix actually
  235. *> used.
  236. *> Modified.
  237. *>
  238. *> LDA INTEGER
  239. *> The leading dimension of A. It must be at
  240. *> least 1 and at least max( NN ).
  241. *> Not modified.
  242. *>
  243. *> B COMPLEX*16 array, dimension (LDB , max(NN))
  244. *> Used to hold the Hermitian positive definite matrix for
  245. *> the generailzed problem.
  246. *> On exit, B contains the last matrix actually
  247. *> used.
  248. *> Modified.
  249. *>
  250. *> LDB INTEGER
  251. *> The leading dimension of B. It must be at
  252. *> least 1 and at least max( NN ).
  253. *> Not modified.
  254. *>
  255. *> D DOUBLE PRECISION array, dimension (max(NN))
  256. *> The eigenvalues of A. On exit, the eigenvalues in D
  257. *> correspond with the matrix in A.
  258. *> Modified.
  259. *>
  260. *> Z COMPLEX*16 array, dimension (LDZ, max(NN))
  261. *> The matrix of eigenvectors.
  262. *> Modified.
  263. *>
  264. *> LDZ INTEGER
  265. *> The leading dimension of ZZ. It must be at least 1 and
  266. *> at least max( NN ).
  267. *> Not modified.
  268. *>
  269. *> AB COMPLEX*16 array, dimension (LDA, max(NN))
  270. *> Workspace.
  271. *> Modified.
  272. *>
  273. *> BB COMPLEX*16 array, dimension (LDB, max(NN))
  274. *> Workspace.
  275. *> Modified.
  276. *>
  277. *> AP COMPLEX*16 array, dimension (max(NN)**2)
  278. *> Workspace.
  279. *> Modified.
  280. *>
  281. *> BP COMPLEX*16 array, dimension (max(NN)**2)
  282. *> Workspace.
  283. *> Modified.
  284. *>
  285. *> WORK COMPLEX*16 array, dimension (NWORK)
  286. *> Workspace.
  287. *> Modified.
  288. *>
  289. *> NWORK INTEGER
  290. *> The number of entries in WORK. This must be at least
  291. *> 2*N + N**2 where N = max( NN(j), 2 ).
  292. *> Not modified.
  293. *>
  294. *> RWORK DOUBLE PRECISION array, dimension (LRWORK)
  295. *> Workspace.
  296. *> Modified.
  297. *>
  298. *> LRWORK INTEGER
  299. *> The number of entries in RWORK. This must be at least
  300. *> max( 7*N, 1 + 4*N + 2*N*lg(N) + 3*N**2 ) where
  301. *> N = max( NN(j) ) and lg( N ) = smallest integer k such
  302. *> that 2**k >= N .
  303. *> Not modified.
  304. *>
  305. *> IWORK INTEGER array, dimension (LIWORK))
  306. *> Workspace.
  307. *> Modified.
  308. *>
  309. *> LIWORK INTEGER
  310. *> The number of entries in IWORK. This must be at least
  311. *> 2 + 5*max( NN(j) ).
  312. *> Not modified.
  313. *>
  314. *> RESULT DOUBLE PRECISION array, dimension (70)
  315. *> The values computed by the 70 tests described above.
  316. *> Modified.
  317. *>
  318. *> INFO INTEGER
  319. *> If 0, then everything ran OK.
  320. *> -1: NSIZES < 0
  321. *> -2: Some NN(j) < 0
  322. *> -3: NTYPES < 0
  323. *> -5: THRESH < 0
  324. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  325. *> -16: LDZ < 1 or LDZ < NMAX.
  326. *> -21: NWORK too small.
  327. *> -23: LRWORK too small.
  328. *> -25: LIWORK too small.
  329. *> If ZLATMR, CLATMS, ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD,
  330. *> ZHPGVD, ZHEGVX, CHPGVX, ZHBGVX returns an error code,
  331. *> the absolute value of it is returned.
  332. *> Modified.
  333. *>
  334. *>-----------------------------------------------------------------------
  335. *>
  336. *> Some Local Variables and Parameters:
  337. *> ---- ----- --------- --- ----------
  338. *> ZERO, ONE Real 0 and 1.
  339. *> MAXTYP The number of types defined.
  340. *> NTEST The number of tests that have been run
  341. *> on this matrix.
  342. *> NTESTT The total number of tests for this call.
  343. *> NMAX Largest value in NN.
  344. *> NMATS The number of matrices generated so far.
  345. *> NERRS The number of tests which have exceeded THRESH
  346. *> so far (computed by DLAFTS).
  347. *> COND, IMODE Values to be passed to the matrix generators.
  348. *> ANORM Norm of A; passed to matrix generators.
  349. *>
  350. *> OVFL, UNFL Overflow and underflow thresholds.
  351. *> ULP, ULPINV Finest relative precision and its inverse.
  352. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  353. *> The following four arrays decode JTYPE:
  354. *> KTYPE(j) The general type (1-10) for type "j".
  355. *> KMODE(j) The MODE value to be passed to the matrix
  356. *> generator for type "j".
  357. *> KMAGN(j) The order of magnitude ( O(1),
  358. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  359. *> \endverbatim
  360. *
  361. * Authors:
  362. * ========
  363. *
  364. *> \author Univ. of Tennessee
  365. *> \author Univ. of California Berkeley
  366. *> \author Univ. of Colorado Denver
  367. *> \author NAG Ltd.
  368. *
  369. *> \ingroup complex16_eig
  370. *
  371. * =====================================================================
  372. SUBROUTINE ZDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  373. $ NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
  374. $ BB, AP, BP, WORK, NWORK, RWORK, LRWORK,
  375. $ IWORK, LIWORK, RESULT, INFO )
  376. *
  377. IMPLICIT NONE
  378. *
  379. * -- LAPACK test routine --
  380. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  381. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  382. *
  383. * .. Scalar Arguments ..
  384. INTEGER INFO, LDA, LDB, LDZ, LIWORK, LRWORK, NOUNIT,
  385. $ NSIZES, NTYPES, NWORK
  386. DOUBLE PRECISION THRESH
  387. * ..
  388. * .. Array Arguments ..
  389. LOGICAL DOTYPE( * )
  390. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  391. DOUBLE PRECISION D( * ), D2( * ), RESULT( * ), RWORK( * )
  392. COMPLEX*16 A( LDA, * ), AB( LDA, * ), AP( * ),
  393. $ B( LDB, * ), BB( LDB, * ), BP( * ), WORK( * ),
  394. $ Z( LDZ, * )
  395. * ..
  396. *
  397. * =====================================================================
  398. *
  399. * .. Parameters ..
  400. DOUBLE PRECISION ZERO, ONE, TEN
  401. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
  402. COMPLEX*16 CZERO, CONE
  403. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  404. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  405. INTEGER MAXTYP
  406. PARAMETER ( MAXTYP = 21 )
  407. * ..
  408. * .. Local Scalars ..
  409. LOGICAL BADNN
  410. CHARACTER UPLO
  411. INTEGER I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP,
  412. $ ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB,
  413. $ KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
  414. $ NTESTT
  415. DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
  416. $ RTUNFL, ULP, ULPINV, UNFL, VL, VU, TEMP1, TEMP2
  417. * ..
  418. * .. Local Arrays ..
  419. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
  420. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  421. $ KTYPE( MAXTYP )
  422. * ..
  423. * .. External Functions ..
  424. LOGICAL LSAME
  425. DOUBLE PRECISION DLAMCH, DLARND
  426. EXTERNAL LSAME, DLAMCH, DLARND
  427. * ..
  428. * .. External Subroutines ..
  429. EXTERNAL DLABAD, DLAFTS, DLASUM, XERBLA, ZHBGV, ZHBGVD,
  430. $ ZHBGVX, ZHEGV, ZHEGVD, ZHEGVX, ZHPGV, ZHPGVD,
  431. $ ZHPGVX, ZLACPY, ZLASET, ZLATMR, ZLATMS, ZSGT01,
  432. $ ZHEGV_2STAGE
  433. * ..
  434. * .. Intrinsic Functions ..
  435. INTRINSIC ABS, DBLE, MAX, MIN, SQRT
  436. * ..
  437. * .. Data statements ..
  438. DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 /
  439. DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
  440. $ 2, 3, 6*1 /
  441. DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  442. $ 0, 0, 6*4 /
  443. * ..
  444. * .. Executable Statements ..
  445. *
  446. * 1) Check for errors
  447. *
  448. NTESTT = 0
  449. INFO = 0
  450. *
  451. BADNN = .FALSE.
  452. NMAX = 0
  453. DO 10 J = 1, NSIZES
  454. NMAX = MAX( NMAX, NN( J ) )
  455. IF( NN( J ).LT.0 )
  456. $ BADNN = .TRUE.
  457. 10 CONTINUE
  458. *
  459. * Check for errors
  460. *
  461. IF( NSIZES.LT.0 ) THEN
  462. INFO = -1
  463. ELSE IF( BADNN ) THEN
  464. INFO = -2
  465. ELSE IF( NTYPES.LT.0 ) THEN
  466. INFO = -3
  467. ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
  468. INFO = -9
  469. ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN
  470. INFO = -16
  471. ELSE IF( 2*MAX( NMAX, 2 )**2.GT.NWORK ) THEN
  472. INFO = -21
  473. ELSE IF( 2*MAX( NMAX, 2 )**2.GT.LRWORK ) THEN
  474. INFO = -23
  475. ELSE IF( 2*MAX( NMAX, 2 )**2.GT.LIWORK ) THEN
  476. INFO = -25
  477. END IF
  478. *
  479. IF( INFO.NE.0 ) THEN
  480. CALL XERBLA( 'ZDRVSG2STG', -INFO )
  481. RETURN
  482. END IF
  483. *
  484. * Quick return if possible
  485. *
  486. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  487. $ RETURN
  488. *
  489. * More Important constants
  490. *
  491. UNFL = DLAMCH( 'Safe minimum' )
  492. OVFL = DLAMCH( 'Overflow' )
  493. CALL DLABAD( UNFL, OVFL )
  494. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  495. ULPINV = ONE / ULP
  496. RTUNFL = SQRT( UNFL )
  497. RTOVFL = SQRT( OVFL )
  498. *
  499. DO 20 I = 1, 4
  500. ISEED2( I ) = ISEED( I )
  501. 20 CONTINUE
  502. *
  503. * Loop over sizes, types
  504. *
  505. NERRS = 0
  506. NMATS = 0
  507. *
  508. DO 650 JSIZE = 1, NSIZES
  509. N = NN( JSIZE )
  510. ANINV = ONE / DBLE( MAX( 1, N ) )
  511. *
  512. IF( NSIZES.NE.1 ) THEN
  513. MTYPES = MIN( MAXTYP, NTYPES )
  514. ELSE
  515. MTYPES = MIN( MAXTYP+1, NTYPES )
  516. END IF
  517. *
  518. KA9 = 0
  519. KB9 = 0
  520. DO 640 JTYPE = 1, MTYPES
  521. IF( .NOT.DOTYPE( JTYPE ) )
  522. $ GO TO 640
  523. NMATS = NMATS + 1
  524. NTEST = 0
  525. *
  526. DO 30 J = 1, 4
  527. IOLDSD( J ) = ISEED( J )
  528. 30 CONTINUE
  529. *
  530. * 2) Compute "A"
  531. *
  532. * Control parameters:
  533. *
  534. * KMAGN KMODE KTYPE
  535. * =1 O(1) clustered 1 zero
  536. * =2 large clustered 2 identity
  537. * =3 small exponential (none)
  538. * =4 arithmetic diagonal, w/ eigenvalues
  539. * =5 random log hermitian, w/ eigenvalues
  540. * =6 random (none)
  541. * =7 random diagonal
  542. * =8 random hermitian
  543. * =9 banded, w/ eigenvalues
  544. *
  545. IF( MTYPES.GT.MAXTYP )
  546. $ GO TO 90
  547. *
  548. ITYPE = KTYPE( JTYPE )
  549. IMODE = KMODE( JTYPE )
  550. *
  551. * Compute norm
  552. *
  553. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  554. *
  555. 40 CONTINUE
  556. ANORM = ONE
  557. GO TO 70
  558. *
  559. 50 CONTINUE
  560. ANORM = ( RTOVFL*ULP )*ANINV
  561. GO TO 70
  562. *
  563. 60 CONTINUE
  564. ANORM = RTUNFL*N*ULPINV
  565. GO TO 70
  566. *
  567. 70 CONTINUE
  568. *
  569. IINFO = 0
  570. COND = ULPINV
  571. *
  572. * Special Matrices -- Identity & Jordan block
  573. *
  574. IF( ITYPE.EQ.1 ) THEN
  575. *
  576. * Zero
  577. *
  578. KA = 0
  579. KB = 0
  580. CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  581. *
  582. ELSE IF( ITYPE.EQ.2 ) THEN
  583. *
  584. * Identity
  585. *
  586. KA = 0
  587. KB = 0
  588. CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  589. DO 80 JCOL = 1, N
  590. A( JCOL, JCOL ) = ANORM
  591. 80 CONTINUE
  592. *
  593. ELSE IF( ITYPE.EQ.4 ) THEN
  594. *
  595. * Diagonal Matrix, [Eigen]values Specified
  596. *
  597. KA = 0
  598. KB = 0
  599. CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  600. $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
  601. *
  602. ELSE IF( ITYPE.EQ.5 ) THEN
  603. *
  604. * Hermitian, eigenvalues specified
  605. *
  606. KA = MAX( 0, N-1 )
  607. KB = KA
  608. CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  609. $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
  610. *
  611. ELSE IF( ITYPE.EQ.7 ) THEN
  612. *
  613. * Diagonal, random eigenvalues
  614. *
  615. KA = 0
  616. KB = 0
  617. CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
  618. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  619. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  620. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  621. *
  622. ELSE IF( ITYPE.EQ.8 ) THEN
  623. *
  624. * Hermitian, random eigenvalues
  625. *
  626. KA = MAX( 0, N-1 )
  627. KB = KA
  628. CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
  629. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  630. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  631. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  632. *
  633. ELSE IF( ITYPE.EQ.9 ) THEN
  634. *
  635. * Hermitian banded, eigenvalues specified
  636. *
  637. * The following values are used for the half-bandwidths:
  638. *
  639. * ka = 1 kb = 1
  640. * ka = 2 kb = 1
  641. * ka = 2 kb = 2
  642. * ka = 3 kb = 1
  643. * ka = 3 kb = 2
  644. * ka = 3 kb = 3
  645. *
  646. KB9 = KB9 + 1
  647. IF( KB9.GT.KA9 ) THEN
  648. KA9 = KA9 + 1
  649. KB9 = 1
  650. END IF
  651. KA = MAX( 0, MIN( N-1, KA9 ) )
  652. KB = MAX( 0, MIN( N-1, KB9 ) )
  653. CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  654. $ ANORM, KA, KA, 'N', A, LDA, WORK, IINFO )
  655. *
  656. ELSE
  657. *
  658. IINFO = 1
  659. END IF
  660. *
  661. IF( IINFO.NE.0 ) THEN
  662. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  663. $ IOLDSD
  664. INFO = ABS( IINFO )
  665. RETURN
  666. END IF
  667. *
  668. 90 CONTINUE
  669. *
  670. ABSTOL = UNFL + UNFL
  671. IF( N.LE.1 ) THEN
  672. IL = 1
  673. IU = N
  674. ELSE
  675. IL = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
  676. IU = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
  677. IF( IL.GT.IU ) THEN
  678. ITEMP = IL
  679. IL = IU
  680. IU = ITEMP
  681. END IF
  682. END IF
  683. *
  684. * 3) Call ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD, CHBGVD,
  685. * ZHEGVX, ZHPGVX and ZHBGVX, do tests.
  686. *
  687. * loop over the three generalized problems
  688. * IBTYPE = 1: A*x = (lambda)*B*x
  689. * IBTYPE = 2: A*B*x = (lambda)*x
  690. * IBTYPE = 3: B*A*x = (lambda)*x
  691. *
  692. DO 630 IBTYPE = 1, 3
  693. *
  694. * loop over the setting UPLO
  695. *
  696. DO 620 IBUPLO = 1, 2
  697. IF( IBUPLO.EQ.1 )
  698. $ UPLO = 'U'
  699. IF( IBUPLO.EQ.2 )
  700. $ UPLO = 'L'
  701. *
  702. * Generate random well-conditioned positive definite
  703. * matrix B, of bandwidth not greater than that of A.
  704. *
  705. CALL ZLATMS( N, N, 'U', ISEED, 'P', RWORK, 5, TEN,
  706. $ ONE, KB, KB, UPLO, B, LDB, WORK( N+1 ),
  707. $ IINFO )
  708. *
  709. * Test ZHEGV
  710. *
  711. NTEST = NTEST + 1
  712. *
  713. CALL ZLACPY( ' ', N, N, A, LDA, Z, LDZ )
  714. CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
  715. *
  716. CALL ZHEGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
  717. $ WORK, NWORK, RWORK, IINFO )
  718. IF( IINFO.NE.0 ) THEN
  719. WRITE( NOUNIT, FMT = 9999 )'ZHEGV(V,' // UPLO //
  720. $ ')', IINFO, N, JTYPE, IOLDSD
  721. INFO = ABS( IINFO )
  722. IF( IINFO.LT.0 ) THEN
  723. RETURN
  724. ELSE
  725. RESULT( NTEST ) = ULPINV
  726. GO TO 100
  727. END IF
  728. END IF
  729. *
  730. * Do Test
  731. *
  732. CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  733. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  734. *
  735. * Test ZHEGV_2STAGE
  736. *
  737. NTEST = NTEST + 1
  738. *
  739. CALL ZLACPY( ' ', N, N, A, LDA, Z, LDZ )
  740. CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
  741. *
  742. CALL ZHEGV_2STAGE( IBTYPE, 'N', UPLO, N, Z, LDZ,
  743. $ BB, LDB, D2, WORK, NWORK, RWORK,
  744. $ IINFO )
  745. IF( IINFO.NE.0 ) THEN
  746. WRITE( NOUNIT, FMT = 9999 )
  747. $ 'ZHEGV_2STAGE(V,' // UPLO //
  748. $ ')', IINFO, N, JTYPE, IOLDSD
  749. INFO = ABS( IINFO )
  750. IF( IINFO.LT.0 ) THEN
  751. RETURN
  752. ELSE
  753. RESULT( NTEST ) = ULPINV
  754. GO TO 100
  755. END IF
  756. END IF
  757. *
  758. * Do Test
  759. *
  760. C CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  761. C $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  762. *
  763. * Do Tests | D1 - D2 | / ( |D1| ulp )
  764. * D1 computed using the standard 1-stage reduction as reference
  765. * D2 computed using the 2-stage reduction
  766. *
  767. TEMP1 = ZERO
  768. TEMP2 = ZERO
  769. DO 151 J = 1, N
  770. TEMP1 = MAX( TEMP1, ABS( D( J ) ),
  771. $ ABS( D2( J ) ) )
  772. TEMP2 = MAX( TEMP2, ABS( D( J )-D2( J ) ) )
  773. 151 CONTINUE
  774. *
  775. RESULT( NTEST ) = TEMP2 /
  776. $ MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  777. *
  778. * Test ZHEGVD
  779. *
  780. NTEST = NTEST + 1
  781. *
  782. CALL ZLACPY( ' ', N, N, A, LDA, Z, LDZ )
  783. CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
  784. *
  785. CALL ZHEGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
  786. $ WORK, NWORK, RWORK, LRWORK, IWORK,
  787. $ LIWORK, IINFO )
  788. IF( IINFO.NE.0 ) THEN
  789. WRITE( NOUNIT, FMT = 9999 )'ZHEGVD(V,' // UPLO //
  790. $ ')', IINFO, N, JTYPE, IOLDSD
  791. INFO = ABS( IINFO )
  792. IF( IINFO.LT.0 ) THEN
  793. RETURN
  794. ELSE
  795. RESULT( NTEST ) = ULPINV
  796. GO TO 100
  797. END IF
  798. END IF
  799. *
  800. * Do Test
  801. *
  802. CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  803. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  804. *
  805. * Test ZHEGVX
  806. *
  807. NTEST = NTEST + 1
  808. *
  809. CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
  810. CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
  811. *
  812. CALL ZHEGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB,
  813. $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
  814. $ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
  815. $ IWORK, IINFO )
  816. IF( IINFO.NE.0 ) THEN
  817. WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,A' // UPLO //
  818. $ ')', IINFO, N, JTYPE, IOLDSD
  819. INFO = ABS( IINFO )
  820. IF( IINFO.LT.0 ) THEN
  821. RETURN
  822. ELSE
  823. RESULT( NTEST ) = ULPINV
  824. GO TO 100
  825. END IF
  826. END IF
  827. *
  828. * Do Test
  829. *
  830. CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  831. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  832. *
  833. NTEST = NTEST + 1
  834. *
  835. CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
  836. CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
  837. *
  838. * since we do not know the exact eigenvalues of this
  839. * eigenpair, we just set VL and VU as constants.
  840. * It is quite possible that there are no eigenvalues
  841. * in this interval.
  842. *
  843. VL = ZERO
  844. VU = ANORM
  845. CALL ZHEGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB,
  846. $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
  847. $ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
  848. $ IWORK, IINFO )
  849. IF( IINFO.NE.0 ) THEN
  850. WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,V,' //
  851. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  852. INFO = ABS( IINFO )
  853. IF( IINFO.LT.0 ) THEN
  854. RETURN
  855. ELSE
  856. RESULT( NTEST ) = ULPINV
  857. GO TO 100
  858. END IF
  859. END IF
  860. *
  861. * Do Test
  862. *
  863. CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  864. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  865. *
  866. NTEST = NTEST + 1
  867. *
  868. CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
  869. CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
  870. *
  871. CALL ZHEGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB,
  872. $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
  873. $ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
  874. $ IWORK, IINFO )
  875. IF( IINFO.NE.0 ) THEN
  876. WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,I,' //
  877. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  878. INFO = ABS( IINFO )
  879. IF( IINFO.LT.0 ) THEN
  880. RETURN
  881. ELSE
  882. RESULT( NTEST ) = ULPINV
  883. GO TO 100
  884. END IF
  885. END IF
  886. *
  887. * Do Test
  888. *
  889. CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  890. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  891. *
  892. 100 CONTINUE
  893. *
  894. * Test ZHPGV
  895. *
  896. NTEST = NTEST + 1
  897. *
  898. * Copy the matrices into packed storage.
  899. *
  900. IF( LSAME( UPLO, 'U' ) ) THEN
  901. IJ = 1
  902. DO 120 J = 1, N
  903. DO 110 I = 1, J
  904. AP( IJ ) = A( I, J )
  905. BP( IJ ) = B( I, J )
  906. IJ = IJ + 1
  907. 110 CONTINUE
  908. 120 CONTINUE
  909. ELSE
  910. IJ = 1
  911. DO 140 J = 1, N
  912. DO 130 I = J, N
  913. AP( IJ ) = A( I, J )
  914. BP( IJ ) = B( I, J )
  915. IJ = IJ + 1
  916. 130 CONTINUE
  917. 140 CONTINUE
  918. END IF
  919. *
  920. CALL ZHPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
  921. $ WORK, RWORK, IINFO )
  922. IF( IINFO.NE.0 ) THEN
  923. WRITE( NOUNIT, FMT = 9999 )'ZHPGV(V,' // UPLO //
  924. $ ')', IINFO, N, JTYPE, IOLDSD
  925. INFO = ABS( IINFO )
  926. IF( IINFO.LT.0 ) THEN
  927. RETURN
  928. ELSE
  929. RESULT( NTEST ) = ULPINV
  930. GO TO 310
  931. END IF
  932. END IF
  933. *
  934. * Do Test
  935. *
  936. CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  937. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  938. *
  939. * Test ZHPGVD
  940. *
  941. NTEST = NTEST + 1
  942. *
  943. * Copy the matrices into packed storage.
  944. *
  945. IF( LSAME( UPLO, 'U' ) ) THEN
  946. IJ = 1
  947. DO 160 J = 1, N
  948. DO 150 I = 1, J
  949. AP( IJ ) = A( I, J )
  950. BP( IJ ) = B( I, J )
  951. IJ = IJ + 1
  952. 150 CONTINUE
  953. 160 CONTINUE
  954. ELSE
  955. IJ = 1
  956. DO 180 J = 1, N
  957. DO 170 I = J, N
  958. AP( IJ ) = A( I, J )
  959. BP( IJ ) = B( I, J )
  960. IJ = IJ + 1
  961. 170 CONTINUE
  962. 180 CONTINUE
  963. END IF
  964. *
  965. CALL ZHPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
  966. $ WORK, NWORK, RWORK, LRWORK, IWORK,
  967. $ LIWORK, IINFO )
  968. IF( IINFO.NE.0 ) THEN
  969. WRITE( NOUNIT, FMT = 9999 )'ZHPGVD(V,' // UPLO //
  970. $ ')', IINFO, N, JTYPE, IOLDSD
  971. INFO = ABS( IINFO )
  972. IF( IINFO.LT.0 ) THEN
  973. RETURN
  974. ELSE
  975. RESULT( NTEST ) = ULPINV
  976. GO TO 310
  977. END IF
  978. END IF
  979. *
  980. * Do Test
  981. *
  982. CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  983. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  984. *
  985. * Test ZHPGVX
  986. *
  987. NTEST = NTEST + 1
  988. *
  989. * Copy the matrices into packed storage.
  990. *
  991. IF( LSAME( UPLO, 'U' ) ) THEN
  992. IJ = 1
  993. DO 200 J = 1, N
  994. DO 190 I = 1, J
  995. AP( IJ ) = A( I, J )
  996. BP( IJ ) = B( I, J )
  997. IJ = IJ + 1
  998. 190 CONTINUE
  999. 200 CONTINUE
  1000. ELSE
  1001. IJ = 1
  1002. DO 220 J = 1, N
  1003. DO 210 I = J, N
  1004. AP( IJ ) = A( I, J )
  1005. BP( IJ ) = B( I, J )
  1006. IJ = IJ + 1
  1007. 210 CONTINUE
  1008. 220 CONTINUE
  1009. END IF
  1010. *
  1011. CALL ZHPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL,
  1012. $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
  1013. $ RWORK, IWORK( N+1 ), IWORK, INFO )
  1014. IF( IINFO.NE.0 ) THEN
  1015. WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,A' // UPLO //
  1016. $ ')', IINFO, N, JTYPE, IOLDSD
  1017. INFO = ABS( IINFO )
  1018. IF( IINFO.LT.0 ) THEN
  1019. RETURN
  1020. ELSE
  1021. RESULT( NTEST ) = ULPINV
  1022. GO TO 310
  1023. END IF
  1024. END IF
  1025. *
  1026. * Do Test
  1027. *
  1028. CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  1029. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  1030. *
  1031. NTEST = NTEST + 1
  1032. *
  1033. * Copy the matrices into packed storage.
  1034. *
  1035. IF( LSAME( UPLO, 'U' ) ) THEN
  1036. IJ = 1
  1037. DO 240 J = 1, N
  1038. DO 230 I = 1, J
  1039. AP( IJ ) = A( I, J )
  1040. BP( IJ ) = B( I, J )
  1041. IJ = IJ + 1
  1042. 230 CONTINUE
  1043. 240 CONTINUE
  1044. ELSE
  1045. IJ = 1
  1046. DO 260 J = 1, N
  1047. DO 250 I = J, N
  1048. AP( IJ ) = A( I, J )
  1049. BP( IJ ) = B( I, J )
  1050. IJ = IJ + 1
  1051. 250 CONTINUE
  1052. 260 CONTINUE
  1053. END IF
  1054. *
  1055. VL = ZERO
  1056. VU = ANORM
  1057. CALL ZHPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL,
  1058. $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
  1059. $ RWORK, IWORK( N+1 ), IWORK, INFO )
  1060. IF( IINFO.NE.0 ) THEN
  1061. WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,V' // UPLO //
  1062. $ ')', IINFO, N, JTYPE, IOLDSD
  1063. INFO = ABS( IINFO )
  1064. IF( IINFO.LT.0 ) THEN
  1065. RETURN
  1066. ELSE
  1067. RESULT( NTEST ) = ULPINV
  1068. GO TO 310
  1069. END IF
  1070. END IF
  1071. *
  1072. * Do Test
  1073. *
  1074. CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  1075. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  1076. *
  1077. NTEST = NTEST + 1
  1078. *
  1079. * Copy the matrices into packed storage.
  1080. *
  1081. IF( LSAME( UPLO, 'U' ) ) THEN
  1082. IJ = 1
  1083. DO 280 J = 1, N
  1084. DO 270 I = 1, J
  1085. AP( IJ ) = A( I, J )
  1086. BP( IJ ) = B( I, J )
  1087. IJ = IJ + 1
  1088. 270 CONTINUE
  1089. 280 CONTINUE
  1090. ELSE
  1091. IJ = 1
  1092. DO 300 J = 1, N
  1093. DO 290 I = J, N
  1094. AP( IJ ) = A( I, J )
  1095. BP( IJ ) = B( I, J )
  1096. IJ = IJ + 1
  1097. 290 CONTINUE
  1098. 300 CONTINUE
  1099. END IF
  1100. *
  1101. CALL ZHPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL,
  1102. $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
  1103. $ RWORK, IWORK( N+1 ), IWORK, INFO )
  1104. IF( IINFO.NE.0 ) THEN
  1105. WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,I' // UPLO //
  1106. $ ')', IINFO, N, JTYPE, IOLDSD
  1107. INFO = ABS( IINFO )
  1108. IF( IINFO.LT.0 ) THEN
  1109. RETURN
  1110. ELSE
  1111. RESULT( NTEST ) = ULPINV
  1112. GO TO 310
  1113. END IF
  1114. END IF
  1115. *
  1116. * Do Test
  1117. *
  1118. CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  1119. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  1120. *
  1121. 310 CONTINUE
  1122. *
  1123. IF( IBTYPE.EQ.1 ) THEN
  1124. *
  1125. * TEST ZHBGV
  1126. *
  1127. NTEST = NTEST + 1
  1128. *
  1129. * Copy the matrices into band storage.
  1130. *
  1131. IF( LSAME( UPLO, 'U' ) ) THEN
  1132. DO 340 J = 1, N
  1133. DO 320 I = MAX( 1, J-KA ), J
  1134. AB( KA+1+I-J, J ) = A( I, J )
  1135. 320 CONTINUE
  1136. DO 330 I = MAX( 1, J-KB ), J
  1137. BB( KB+1+I-J, J ) = B( I, J )
  1138. 330 CONTINUE
  1139. 340 CONTINUE
  1140. ELSE
  1141. DO 370 J = 1, N
  1142. DO 350 I = J, MIN( N, J+KA )
  1143. AB( 1+I-J, J ) = A( I, J )
  1144. 350 CONTINUE
  1145. DO 360 I = J, MIN( N, J+KB )
  1146. BB( 1+I-J, J ) = B( I, J )
  1147. 360 CONTINUE
  1148. 370 CONTINUE
  1149. END IF
  1150. *
  1151. CALL ZHBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB,
  1152. $ D, Z, LDZ, WORK, RWORK, IINFO )
  1153. IF( IINFO.NE.0 ) THEN
  1154. WRITE( NOUNIT, FMT = 9999 )'ZHBGV(V,' //
  1155. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  1156. INFO = ABS( IINFO )
  1157. IF( IINFO.LT.0 ) THEN
  1158. RETURN
  1159. ELSE
  1160. RESULT( NTEST ) = ULPINV
  1161. GO TO 620
  1162. END IF
  1163. END IF
  1164. *
  1165. * Do Test
  1166. *
  1167. CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  1168. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  1169. *
  1170. * TEST ZHBGVD
  1171. *
  1172. NTEST = NTEST + 1
  1173. *
  1174. * Copy the matrices into band storage.
  1175. *
  1176. IF( LSAME( UPLO, 'U' ) ) THEN
  1177. DO 400 J = 1, N
  1178. DO 380 I = MAX( 1, J-KA ), J
  1179. AB( KA+1+I-J, J ) = A( I, J )
  1180. 380 CONTINUE
  1181. DO 390 I = MAX( 1, J-KB ), J
  1182. BB( KB+1+I-J, J ) = B( I, J )
  1183. 390 CONTINUE
  1184. 400 CONTINUE
  1185. ELSE
  1186. DO 430 J = 1, N
  1187. DO 410 I = J, MIN( N, J+KA )
  1188. AB( 1+I-J, J ) = A( I, J )
  1189. 410 CONTINUE
  1190. DO 420 I = J, MIN( N, J+KB )
  1191. BB( 1+I-J, J ) = B( I, J )
  1192. 420 CONTINUE
  1193. 430 CONTINUE
  1194. END IF
  1195. *
  1196. CALL ZHBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB,
  1197. $ LDB, D, Z, LDZ, WORK, NWORK, RWORK,
  1198. $ LRWORK, IWORK, LIWORK, IINFO )
  1199. IF( IINFO.NE.0 ) THEN
  1200. WRITE( NOUNIT, FMT = 9999 )'ZHBGVD(V,' //
  1201. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  1202. INFO = ABS( IINFO )
  1203. IF( IINFO.LT.0 ) THEN
  1204. RETURN
  1205. ELSE
  1206. RESULT( NTEST ) = ULPINV
  1207. GO TO 620
  1208. END IF
  1209. END IF
  1210. *
  1211. * Do Test
  1212. *
  1213. CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  1214. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  1215. *
  1216. * Test ZHBGVX
  1217. *
  1218. NTEST = NTEST + 1
  1219. *
  1220. * Copy the matrices into band storage.
  1221. *
  1222. IF( LSAME( UPLO, 'U' ) ) THEN
  1223. DO 460 J = 1, N
  1224. DO 440 I = MAX( 1, J-KA ), J
  1225. AB( KA+1+I-J, J ) = A( I, J )
  1226. 440 CONTINUE
  1227. DO 450 I = MAX( 1, J-KB ), J
  1228. BB( KB+1+I-J, J ) = B( I, J )
  1229. 450 CONTINUE
  1230. 460 CONTINUE
  1231. ELSE
  1232. DO 490 J = 1, N
  1233. DO 470 I = J, MIN( N, J+KA )
  1234. AB( 1+I-J, J ) = A( I, J )
  1235. 470 CONTINUE
  1236. DO 480 I = J, MIN( N, J+KB )
  1237. BB( 1+I-J, J ) = B( I, J )
  1238. 480 CONTINUE
  1239. 490 CONTINUE
  1240. END IF
  1241. *
  1242. CALL ZHBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA,
  1243. $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
  1244. $ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
  1245. $ IWORK( N+1 ), IWORK, IINFO )
  1246. IF( IINFO.NE.0 ) THEN
  1247. WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,A' //
  1248. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  1249. INFO = ABS( IINFO )
  1250. IF( IINFO.LT.0 ) THEN
  1251. RETURN
  1252. ELSE
  1253. RESULT( NTEST ) = ULPINV
  1254. GO TO 620
  1255. END IF
  1256. END IF
  1257. *
  1258. * Do Test
  1259. *
  1260. CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  1261. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  1262. *
  1263. NTEST = NTEST + 1
  1264. *
  1265. * Copy the matrices into band storage.
  1266. *
  1267. IF( LSAME( UPLO, 'U' ) ) THEN
  1268. DO 520 J = 1, N
  1269. DO 500 I = MAX( 1, J-KA ), J
  1270. AB( KA+1+I-J, J ) = A( I, J )
  1271. 500 CONTINUE
  1272. DO 510 I = MAX( 1, J-KB ), J
  1273. BB( KB+1+I-J, J ) = B( I, J )
  1274. 510 CONTINUE
  1275. 520 CONTINUE
  1276. ELSE
  1277. DO 550 J = 1, N
  1278. DO 530 I = J, MIN( N, J+KA )
  1279. AB( 1+I-J, J ) = A( I, J )
  1280. 530 CONTINUE
  1281. DO 540 I = J, MIN( N, J+KB )
  1282. BB( 1+I-J, J ) = B( I, J )
  1283. 540 CONTINUE
  1284. 550 CONTINUE
  1285. END IF
  1286. *
  1287. VL = ZERO
  1288. VU = ANORM
  1289. CALL ZHBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA,
  1290. $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
  1291. $ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
  1292. $ IWORK( N+1 ), IWORK, IINFO )
  1293. IF( IINFO.NE.0 ) THEN
  1294. WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,V' //
  1295. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  1296. INFO = ABS( IINFO )
  1297. IF( IINFO.LT.0 ) THEN
  1298. RETURN
  1299. ELSE
  1300. RESULT( NTEST ) = ULPINV
  1301. GO TO 620
  1302. END IF
  1303. END IF
  1304. *
  1305. * Do Test
  1306. *
  1307. CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  1308. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  1309. *
  1310. NTEST = NTEST + 1
  1311. *
  1312. * Copy the matrices into band storage.
  1313. *
  1314. IF( LSAME( UPLO, 'U' ) ) THEN
  1315. DO 580 J = 1, N
  1316. DO 560 I = MAX( 1, J-KA ), J
  1317. AB( KA+1+I-J, J ) = A( I, J )
  1318. 560 CONTINUE
  1319. DO 570 I = MAX( 1, J-KB ), J
  1320. BB( KB+1+I-J, J ) = B( I, J )
  1321. 570 CONTINUE
  1322. 580 CONTINUE
  1323. ELSE
  1324. DO 610 J = 1, N
  1325. DO 590 I = J, MIN( N, J+KA )
  1326. AB( 1+I-J, J ) = A( I, J )
  1327. 590 CONTINUE
  1328. DO 600 I = J, MIN( N, J+KB )
  1329. BB( 1+I-J, J ) = B( I, J )
  1330. 600 CONTINUE
  1331. 610 CONTINUE
  1332. END IF
  1333. *
  1334. CALL ZHBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA,
  1335. $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
  1336. $ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
  1337. $ IWORK( N+1 ), IWORK, IINFO )
  1338. IF( IINFO.NE.0 ) THEN
  1339. WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,I' //
  1340. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  1341. INFO = ABS( IINFO )
  1342. IF( IINFO.LT.0 ) THEN
  1343. RETURN
  1344. ELSE
  1345. RESULT( NTEST ) = ULPINV
  1346. GO TO 620
  1347. END IF
  1348. END IF
  1349. *
  1350. * Do Test
  1351. *
  1352. CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  1353. $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
  1354. *
  1355. END IF
  1356. *
  1357. 620 CONTINUE
  1358. 630 CONTINUE
  1359. *
  1360. * End of Loop -- Check for RESULT(j) > THRESH
  1361. *
  1362. NTESTT = NTESTT + NTEST
  1363. CALL DLAFTS( 'ZSG', N, N, JTYPE, NTEST, RESULT, IOLDSD,
  1364. $ THRESH, NOUNIT, NERRS )
  1365. 640 CONTINUE
  1366. 650 CONTINUE
  1367. *
  1368. * Summary
  1369. *
  1370. CALL DLASUM( 'ZSG', NOUNIT, NERRS, NTESTT )
  1371. *
  1372. RETURN
  1373. *
  1374. 9999 FORMAT( ' ZDRVSG2STG: ', A, ' returned INFO=', I6, '.', / 9X,
  1375. $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1376. *
  1377. * End of ZDRVSG2STG
  1378. *
  1379. END