You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cchkhs.f 39 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099
  1. *> \brief \b CCHKHS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, W1,
  13. * W3, EVECTL, EVECTR, EVECTY, EVECTX, UU, TAU,
  14. * WORK, NWORK, RWORK, IWORK, SELECT, RESULT,
  15. * INFO )
  16. *
  17. * .. Scalar Arguments ..
  18. * INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
  19. * REAL THRESH
  20. * ..
  21. * .. Array Arguments ..
  22. * LOGICAL DOTYPE( * ), SELECT( * )
  23. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  24. * REAL RESULT( 14 ), RWORK( * )
  25. * COMPLEX A( LDA, * ), EVECTL( LDU, * ),
  26. * $ EVECTR( LDU, * ), EVECTX( LDU, * ),
  27. * $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ),
  28. * $ T2( LDA, * ), TAU( * ), U( LDU, * ),
  29. * $ UU( LDU, * ), UZ( LDU, * ), W1( * ), W3( * ),
  30. * $ WORK( * ), Z( LDU, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CCHKHS checks the nonsymmetric eigenvalue problem routines.
  40. *>
  41. *> CGEHRD factors A as U H U' , where ' means conjugate
  42. *> transpose, H is hessenberg, and U is unitary.
  43. *>
  44. *> CUNGHR generates the unitary matrix U.
  45. *>
  46. *> CUNMHR multiplies a matrix by the unitary matrix U.
  47. *>
  48. *> CHSEQR factors H as Z T Z' , where Z is unitary and T
  49. *> is upper triangular. It also computes the eigenvalues,
  50. *> w(1), ..., w(n); we define a diagonal matrix W whose
  51. *> (diagonal) entries are the eigenvalues.
  52. *>
  53. *> CTREVC computes the left eigenvector matrix L and the
  54. *> right eigenvector matrix R for the matrix T. The
  55. *> columns of L are the complex conjugates of the left
  56. *> eigenvectors of T. The columns of R are the right
  57. *> eigenvectors of T. L is lower triangular, and R is
  58. *> upper triangular.
  59. *>
  60. *> CHSEIN computes the left eigenvector matrix Y and the
  61. *> right eigenvector matrix X for the matrix H. The
  62. *> columns of Y are the complex conjugates of the left
  63. *> eigenvectors of H. The columns of X are the right
  64. *> eigenvectors of H. Y is lower triangular, and X is
  65. *> upper triangular.
  66. *>
  67. *> When CCHKHS is called, a number of matrix "sizes" ("n's") and a
  68. *> number of matrix "types" are specified. For each size ("n")
  69. *> and each type of matrix, one matrix will be generated and used
  70. *> to test the nonsymmetric eigenroutines. For each matrix, 14
  71. *> tests will be performed:
  72. *>
  73. *> (1) | A - U H U**H | / ( |A| n ulp )
  74. *>
  75. *> (2) | I - UU**H | / ( n ulp )
  76. *>
  77. *> (3) | H - Z T Z**H | / ( |H| n ulp )
  78. *>
  79. *> (4) | I - ZZ**H | / ( n ulp )
  80. *>
  81. *> (5) | A - UZ H (UZ)**H | / ( |A| n ulp )
  82. *>
  83. *> (6) | I - UZ (UZ)**H | / ( n ulp )
  84. *>
  85. *> (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp )
  86. *>
  87. *> (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp )
  88. *>
  89. *> (9) | TR - RW | / ( |T| |R| ulp )
  90. *>
  91. *> (10) | L**H T - W**H L | / ( |T| |L| ulp )
  92. *>
  93. *> (11) | HX - XW | / ( |H| |X| ulp )
  94. *>
  95. *> (12) | Y**H H - W**H Y | / ( |H| |Y| ulp )
  96. *>
  97. *> (13) | AX - XW | / ( |A| |X| ulp )
  98. *>
  99. *> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp )
  100. *>
  101. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  102. *> each element NN(j) specifies one size.
  103. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  104. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  105. *> Currently, the list of possible types is:
  106. *>
  107. *> (1) The zero matrix.
  108. *> (2) The identity matrix.
  109. *> (3) A (transposed) Jordan block, with 1's on the diagonal.
  110. *>
  111. *> (4) A diagonal matrix with evenly spaced entries
  112. *> 1, ..., ULP and random complex angles.
  113. *> (ULP = (first number larger than 1) - 1 )
  114. *> (5) A diagonal matrix with geometrically spaced entries
  115. *> 1, ..., ULP and random complex angles.
  116. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  117. *> and random complex angles.
  118. *>
  119. *> (7) Same as (4), but multiplied by SQRT( overflow threshold )
  120. *> (8) Same as (4), but multiplied by SQRT( underflow threshold )
  121. *>
  122. *> (9) A matrix of the form U' T U, where U is unitary and
  123. *> T has evenly spaced entries 1, ..., ULP with random complex
  124. *> angles on the diagonal and random O(1) entries in the upper
  125. *> triangle.
  126. *>
  127. *> (10) A matrix of the form U' T U, where U is unitary and
  128. *> T has geometrically spaced entries 1, ..., ULP with random
  129. *> complex angles on the diagonal and random O(1) entries in
  130. *> the upper triangle.
  131. *>
  132. *> (11) A matrix of the form U' T U, where U is unitary and
  133. *> T has "clustered" entries 1, ULP,..., ULP with random
  134. *> complex angles on the diagonal and random O(1) entries in
  135. *> the upper triangle.
  136. *>
  137. *> (12) A matrix of the form U' T U, where U is unitary and
  138. *> T has complex eigenvalues randomly chosen from
  139. *> ULP < |z| < 1 and random O(1) entries in the upper
  140. *> triangle.
  141. *>
  142. *> (13) A matrix of the form X' T X, where X has condition
  143. *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
  144. *> with random complex angles on the diagonal and random O(1)
  145. *> entries in the upper triangle.
  146. *>
  147. *> (14) A matrix of the form X' T X, where X has condition
  148. *> SQRT( ULP ) and T has geometrically spaced entries
  149. *> 1, ..., ULP with random complex angles on the diagonal
  150. *> and random O(1) entries in the upper triangle.
  151. *>
  152. *> (15) A matrix of the form X' T X, where X has condition
  153. *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
  154. *> with random complex angles on the diagonal and random O(1)
  155. *> entries in the upper triangle.
  156. *>
  157. *> (16) A matrix of the form X' T X, where X has condition
  158. *> SQRT( ULP ) and T has complex eigenvalues randomly chosen
  159. *> from ULP < |z| < 1 and random O(1) entries in the upper
  160. *> triangle.
  161. *>
  162. *> (17) Same as (16), but multiplied by SQRT( overflow threshold )
  163. *> (18) Same as (16), but multiplied by SQRT( underflow threshold )
  164. *>
  165. *> (19) Nonsymmetric matrix with random entries chosen from |z| < 1
  166. *> (20) Same as (19), but multiplied by SQRT( overflow threshold )
  167. *> (21) Same as (19), but multiplied by SQRT( underflow threshold )
  168. *> \endverbatim
  169. *
  170. * Arguments:
  171. * ==========
  172. *
  173. *> \verbatim
  174. *> NSIZES - INTEGER
  175. *> The number of sizes of matrices to use. If it is zero,
  176. *> CCHKHS does nothing. It must be at least zero.
  177. *> Not modified.
  178. *>
  179. *> NN - INTEGER array, dimension (NSIZES)
  180. *> An array containing the sizes to be used for the matrices.
  181. *> Zero values will be skipped. The values must be at least
  182. *> zero.
  183. *> Not modified.
  184. *>
  185. *> NTYPES - INTEGER
  186. *> The number of elements in DOTYPE. If it is zero, CCHKHS
  187. *> does nothing. It must be at least zero. If it is MAXTYP+1
  188. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  189. *> defined, which is to use whatever matrix is in A. This
  190. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  191. *> DOTYPE(MAXTYP+1) is .TRUE. .
  192. *> Not modified.
  193. *>
  194. *> DOTYPE - LOGICAL array, dimension (NTYPES)
  195. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  196. *> matrix of that size and of type j will be generated.
  197. *> If NTYPES is smaller than the maximum number of types
  198. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  199. *> MAXTYP will not be generated. If NTYPES is larger
  200. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  201. *> will be ignored.
  202. *> Not modified.
  203. *>
  204. *> ISEED - INTEGER array, dimension (4)
  205. *> On entry ISEED specifies the seed of the random number
  206. *> generator. The array elements should be between 0 and 4095;
  207. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  208. *> be odd. The random number generator uses a linear
  209. *> congruential sequence limited to small integers, and so
  210. *> should produce machine independent random numbers. The
  211. *> values of ISEED are changed on exit, and can be used in the
  212. *> next call to CCHKHS to continue the same random number
  213. *> sequence.
  214. *> Modified.
  215. *>
  216. *> THRESH - REAL
  217. *> A test will count as "failed" if the "error", computed as
  218. *> described above, exceeds THRESH. Note that the error
  219. *> is scaled to be O(1), so THRESH should be a reasonably
  220. *> small multiple of 1, e.g., 10 or 100. In particular,
  221. *> it should not depend on the precision (single vs. double)
  222. *> or the size of the matrix. It must be at least zero.
  223. *> Not modified.
  224. *>
  225. *> NOUNIT - INTEGER
  226. *> The FORTRAN unit number for printing out error messages
  227. *> (e.g., if a routine returns IINFO not equal to 0.)
  228. *> Not modified.
  229. *>
  230. *> A - COMPLEX array, dimension (LDA,max(NN))
  231. *> Used to hold the matrix whose eigenvalues are to be
  232. *> computed. On exit, A contains the last matrix actually
  233. *> used.
  234. *> Modified.
  235. *>
  236. *> LDA - INTEGER
  237. *> The leading dimension of A, H, T1 and T2. It must be at
  238. *> least 1 and at least max( NN ).
  239. *> Not modified.
  240. *>
  241. *> H - COMPLEX array, dimension (LDA,max(NN))
  242. *> The upper hessenberg matrix computed by CGEHRD. On exit,
  243. *> H contains the Hessenberg form of the matrix in A.
  244. *> Modified.
  245. *>
  246. *> T1 - COMPLEX array, dimension (LDA,max(NN))
  247. *> The Schur (="quasi-triangular") matrix computed by CHSEQR
  248. *> if Z is computed. On exit, T1 contains the Schur form of
  249. *> the matrix in A.
  250. *> Modified.
  251. *>
  252. *> T2 - COMPLEX array, dimension (LDA,max(NN))
  253. *> The Schur matrix computed by CHSEQR when Z is not computed.
  254. *> This should be identical to T1.
  255. *> Modified.
  256. *>
  257. *> LDU - INTEGER
  258. *> The leading dimension of U, Z, UZ and UU. It must be at
  259. *> least 1 and at least max( NN ).
  260. *> Not modified.
  261. *>
  262. *> U - COMPLEX array, dimension (LDU,max(NN))
  263. *> The unitary matrix computed by CGEHRD.
  264. *> Modified.
  265. *>
  266. *> Z - COMPLEX array, dimension (LDU,max(NN))
  267. *> The unitary matrix computed by CHSEQR.
  268. *> Modified.
  269. *>
  270. *> UZ - COMPLEX array, dimension (LDU,max(NN))
  271. *> The product of U times Z.
  272. *> Modified.
  273. *>
  274. *> W1 - COMPLEX array, dimension (max(NN))
  275. *> The eigenvalues of A, as computed by a full Schur
  276. *> decomposition H = Z T Z'. On exit, W1 contains the
  277. *> eigenvalues of the matrix in A.
  278. *> Modified.
  279. *>
  280. *> W3 - COMPLEX array, dimension (max(NN))
  281. *> The eigenvalues of A, as computed by a partial Schur
  282. *> decomposition (Z not computed, T only computed as much
  283. *> as is necessary for determining eigenvalues). On exit,
  284. *> W3 contains the eigenvalues of the matrix in A, possibly
  285. *> perturbed by CHSEIN.
  286. *> Modified.
  287. *>
  288. *> EVECTL - COMPLEX array, dimension (LDU,max(NN))
  289. *> The conjugate transpose of the (upper triangular) left
  290. *> eigenvector matrix for the matrix in T1.
  291. *> Modified.
  292. *>
  293. *> EVECTR - COMPLEX array, dimension (LDU,max(NN))
  294. *> The (upper triangular) right eigenvector matrix for the
  295. *> matrix in T1.
  296. *> Modified.
  297. *>
  298. *> EVECTY - COMPLEX array, dimension (LDU,max(NN))
  299. *> The conjugate transpose of the left eigenvector matrix
  300. *> for the matrix in H.
  301. *> Modified.
  302. *>
  303. *> EVECTX - COMPLEX array, dimension (LDU,max(NN))
  304. *> The right eigenvector matrix for the matrix in H.
  305. *> Modified.
  306. *>
  307. *> UU - COMPLEX array, dimension (LDU,max(NN))
  308. *> Details of the unitary matrix computed by CGEHRD.
  309. *> Modified.
  310. *>
  311. *> TAU - COMPLEX array, dimension (max(NN))
  312. *> Further details of the unitary matrix computed by CGEHRD.
  313. *> Modified.
  314. *>
  315. *> WORK - COMPLEX array, dimension (NWORK)
  316. *> Workspace.
  317. *> Modified.
  318. *>
  319. *> NWORK - INTEGER
  320. *> The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2.
  321. *>
  322. *> RWORK - REAL array, dimension (max(NN))
  323. *> Workspace. Could be equivalenced to IWORK, but not SELECT.
  324. *> Modified.
  325. *>
  326. *> IWORK - INTEGER array, dimension (max(NN))
  327. *> Workspace.
  328. *> Modified.
  329. *>
  330. *> SELECT - LOGICAL array, dimension (max(NN))
  331. *> Workspace. Could be equivalenced to IWORK, but not RWORK.
  332. *> Modified.
  333. *>
  334. *> RESULT - REAL array, dimension (14)
  335. *> The values computed by the fourteen tests described above.
  336. *> The values are currently limited to 1/ulp, to avoid
  337. *> overflow.
  338. *> Modified.
  339. *>
  340. *> INFO - INTEGER
  341. *> If 0, then everything ran OK.
  342. *> -1: NSIZES < 0
  343. *> -2: Some NN(j) < 0
  344. *> -3: NTYPES < 0
  345. *> -6: THRESH < 0
  346. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  347. *> -14: LDU < 1 or LDU < NMAX.
  348. *> -26: NWORK too small.
  349. *> If CLATMR, CLATMS, or CLATME returns an error code, the
  350. *> absolute value of it is returned.
  351. *> If 1, then CHSEQR could not find all the shifts.
  352. *> If 2, then the EISPACK code (for small blocks) failed.
  353. *> If >2, then 30*N iterations were not enough to find an
  354. *> eigenvalue or to decompose the problem.
  355. *> Modified.
  356. *>
  357. *>-----------------------------------------------------------------------
  358. *>
  359. *> Some Local Variables and Parameters:
  360. *> ---- ----- --------- --- ----------
  361. *>
  362. *> ZERO, ONE Real 0 and 1.
  363. *> MAXTYP The number of types defined.
  364. *> MTEST The number of tests defined: care must be taken
  365. *> that (1) the size of RESULT, (2) the number of
  366. *> tests actually performed, and (3) MTEST agree.
  367. *> NTEST The number of tests performed on this matrix
  368. *> so far. This should be less than MTEST, and
  369. *> equal to it by the last test. It will be less
  370. *> if any of the routines being tested indicates
  371. *> that it could not compute the matrices that
  372. *> would be tested.
  373. *> NMAX Largest value in NN.
  374. *> NMATS The number of matrices generated so far.
  375. *> NERRS The number of tests which have exceeded THRESH
  376. *> so far (computed by SLAFTS).
  377. *> COND, CONDS,
  378. *> IMODE Values to be passed to the matrix generators.
  379. *> ANORM Norm of A; passed to matrix generators.
  380. *>
  381. *> OVFL, UNFL Overflow and underflow thresholds.
  382. *> ULP, ULPINV Finest relative precision and its inverse.
  383. *> RTOVFL, RTUNFL,
  384. *> RTULP, RTULPI Square roots of the previous 4 values.
  385. *>
  386. *> The following four arrays decode JTYPE:
  387. *> KTYPE(j) The general type (1-10) for type "j".
  388. *> KMODE(j) The MODE value to be passed to the matrix
  389. *> generator for type "j".
  390. *> KMAGN(j) The order of magnitude ( O(1),
  391. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  392. *> KCONDS(j) Selects whether CONDS is to be 1 or
  393. *> 1/sqrt(ulp). (0 means irrelevant.)
  394. *> \endverbatim
  395. *
  396. * Authors:
  397. * ========
  398. *
  399. *> \author Univ. of Tennessee
  400. *> \author Univ. of California Berkeley
  401. *> \author Univ. of Colorado Denver
  402. *> \author NAG Ltd.
  403. *
  404. *> \ingroup complex_eig
  405. *
  406. * =====================================================================
  407. SUBROUTINE CCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  408. $ NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, W1,
  409. $ W3, EVECTL, EVECTR, EVECTY, EVECTX, UU, TAU,
  410. $ WORK, NWORK, RWORK, IWORK, SELECT, RESULT,
  411. $ INFO )
  412. *
  413. * -- LAPACK test routine --
  414. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  415. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  416. *
  417. * .. Scalar Arguments ..
  418. INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
  419. REAL THRESH
  420. * ..
  421. * .. Array Arguments ..
  422. LOGICAL DOTYPE( * ), SELECT( * )
  423. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  424. REAL RESULT( 14 ), RWORK( * )
  425. COMPLEX A( LDA, * ), EVECTL( LDU, * ),
  426. $ EVECTR( LDU, * ), EVECTX( LDU, * ),
  427. $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ),
  428. $ T2( LDA, * ), TAU( * ), U( LDU, * ),
  429. $ UU( LDU, * ), UZ( LDU, * ), W1( * ), W3( * ),
  430. $ WORK( * ), Z( LDU, * )
  431. * ..
  432. *
  433. * =====================================================================
  434. *
  435. * .. Parameters ..
  436. REAL ZERO, ONE
  437. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  438. COMPLEX CZERO, CONE
  439. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  440. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  441. INTEGER MAXTYP
  442. PARAMETER ( MAXTYP = 21 )
  443. * ..
  444. * .. Local Scalars ..
  445. LOGICAL BADNN, MATCH
  446. INTEGER I, IHI, IINFO, ILO, IMODE, IN, ITYPE, J, JCOL,
  447. $ JJ, JSIZE, JTYPE, K, MTYPES, N, N1, NERRS,
  448. $ NMATS, NMAX, NTEST, NTESTT
  449. REAL ANINV, ANORM, COND, CONDS, OVFL, RTOVFL, RTULP,
  450. $ RTULPI, RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL
  451. * ..
  452. * .. Local Arrays ..
  453. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
  454. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  455. $ KTYPE( MAXTYP )
  456. REAL DUMMA( 4 )
  457. COMPLEX CDUMMA( 4 )
  458. * ..
  459. * .. External Functions ..
  460. REAL SLAMCH
  461. EXTERNAL SLAMCH
  462. * ..
  463. * .. External Subroutines ..
  464. EXTERNAL CCOPY, CGEHRD, CGEMM, CGET10, CGET22, CHSEIN,
  465. $ CHSEQR, CHST01, CLACPY, CLASET, CLATME, CLATMR,
  466. $ CLATMS, CTREVC, CUNGHR, CUNMHR, SLABAD, SLAFTS,
  467. $ SLASUM, XERBLA
  468. * ..
  469. * .. Intrinsic Functions ..
  470. INTRINSIC ABS, MAX, MIN, REAL, SQRT
  471. * ..
  472. * .. Data statements ..
  473. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
  474. DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
  475. $ 3, 1, 2, 3 /
  476. DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
  477. $ 1, 5, 5, 5, 4, 3, 1 /
  478. DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
  479. * ..
  480. * .. Executable Statements ..
  481. *
  482. * Check for errors
  483. *
  484. NTESTT = 0
  485. INFO = 0
  486. *
  487. BADNN = .FALSE.
  488. NMAX = 0
  489. DO 10 J = 1, NSIZES
  490. NMAX = MAX( NMAX, NN( J ) )
  491. IF( NN( J ).LT.0 )
  492. $ BADNN = .TRUE.
  493. 10 CONTINUE
  494. *
  495. * Check for errors
  496. *
  497. IF( NSIZES.LT.0 ) THEN
  498. INFO = -1
  499. ELSE IF( BADNN ) THEN
  500. INFO = -2
  501. ELSE IF( NTYPES.LT.0 ) THEN
  502. INFO = -3
  503. ELSE IF( THRESH.LT.ZERO ) THEN
  504. INFO = -6
  505. ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
  506. INFO = -9
  507. ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
  508. INFO = -14
  509. ELSE IF( 4*NMAX*NMAX+2.GT.NWORK ) THEN
  510. INFO = -26
  511. END IF
  512. *
  513. IF( INFO.NE.0 ) THEN
  514. CALL XERBLA( 'CCHKHS', -INFO )
  515. RETURN
  516. END IF
  517. *
  518. * Quick return if possible
  519. *
  520. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  521. $ RETURN
  522. *
  523. * More important constants
  524. *
  525. UNFL = SLAMCH( 'Safe minimum' )
  526. OVFL = SLAMCH( 'Overflow' )
  527. CALL SLABAD( UNFL, OVFL )
  528. ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
  529. ULPINV = ONE / ULP
  530. RTUNFL = SQRT( UNFL )
  531. RTOVFL = SQRT( OVFL )
  532. RTULP = SQRT( ULP )
  533. RTULPI = ONE / RTULP
  534. *
  535. * Loop over sizes, types
  536. *
  537. NERRS = 0
  538. NMATS = 0
  539. *
  540. DO 260 JSIZE = 1, NSIZES
  541. N = NN( JSIZE )
  542. IF( N.EQ.0 )
  543. $ GO TO 260
  544. N1 = MAX( 1, N )
  545. ANINV = ONE / REAL( N1 )
  546. *
  547. IF( NSIZES.NE.1 ) THEN
  548. MTYPES = MIN( MAXTYP, NTYPES )
  549. ELSE
  550. MTYPES = MIN( MAXTYP+1, NTYPES )
  551. END IF
  552. *
  553. DO 250 JTYPE = 1, MTYPES
  554. IF( .NOT.DOTYPE( JTYPE ) )
  555. $ GO TO 250
  556. NMATS = NMATS + 1
  557. NTEST = 0
  558. *
  559. * Save ISEED in case of an error.
  560. *
  561. DO 20 J = 1, 4
  562. IOLDSD( J ) = ISEED( J )
  563. 20 CONTINUE
  564. *
  565. * Initialize RESULT
  566. *
  567. DO 30 J = 1, 14
  568. RESULT( J ) = ZERO
  569. 30 CONTINUE
  570. *
  571. * Compute "A"
  572. *
  573. * Control parameters:
  574. *
  575. * KMAGN KCONDS KMODE KTYPE
  576. * =1 O(1) 1 clustered 1 zero
  577. * =2 large large clustered 2 identity
  578. * =3 small exponential Jordan
  579. * =4 arithmetic diagonal, (w/ eigenvalues)
  580. * =5 random log hermitian, w/ eigenvalues
  581. * =6 random general, w/ eigenvalues
  582. * =7 random diagonal
  583. * =8 random hermitian
  584. * =9 random general
  585. * =10 random triangular
  586. *
  587. IF( MTYPES.GT.MAXTYP )
  588. $ GO TO 100
  589. *
  590. ITYPE = KTYPE( JTYPE )
  591. IMODE = KMODE( JTYPE )
  592. *
  593. * Compute norm
  594. *
  595. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  596. *
  597. 40 CONTINUE
  598. ANORM = ONE
  599. GO TO 70
  600. *
  601. 50 CONTINUE
  602. ANORM = ( RTOVFL*ULP )*ANINV
  603. GO TO 70
  604. *
  605. 60 CONTINUE
  606. ANORM = RTUNFL*N*ULPINV
  607. GO TO 70
  608. *
  609. 70 CONTINUE
  610. *
  611. CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  612. IINFO = 0
  613. COND = ULPINV
  614. *
  615. * Special Matrices
  616. *
  617. IF( ITYPE.EQ.1 ) THEN
  618. *
  619. * Zero
  620. *
  621. IINFO = 0
  622. ELSE IF( ITYPE.EQ.2 ) THEN
  623. *
  624. * Identity
  625. *
  626. DO 80 JCOL = 1, N
  627. A( JCOL, JCOL ) = ANORM
  628. 80 CONTINUE
  629. *
  630. ELSE IF( ITYPE.EQ.3 ) THEN
  631. *
  632. * Jordan Block
  633. *
  634. DO 90 JCOL = 1, N
  635. A( JCOL, JCOL ) = ANORM
  636. IF( JCOL.GT.1 )
  637. $ A( JCOL, JCOL-1 ) = ONE
  638. 90 CONTINUE
  639. *
  640. ELSE IF( ITYPE.EQ.4 ) THEN
  641. *
  642. * Diagonal Matrix, [Eigen]values Specified
  643. *
  644. CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, IMODE, COND,
  645. $ CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
  646. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  647. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  648. *
  649. ELSE IF( ITYPE.EQ.5 ) THEN
  650. *
  651. * Hermitian, eigenvalues specified
  652. *
  653. CALL CLATMS( N, N, 'D', ISEED, 'H', RWORK, IMODE, COND,
  654. $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
  655. *
  656. ELSE IF( ITYPE.EQ.6 ) THEN
  657. *
  658. * General, eigenvalues specified
  659. *
  660. IF( KCONDS( JTYPE ).EQ.1 ) THEN
  661. CONDS = ONE
  662. ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
  663. CONDS = RTULPI
  664. ELSE
  665. CONDS = ZERO
  666. END IF
  667. *
  668. CALL CLATME( N, 'D', ISEED, WORK, IMODE, COND, CONE,
  669. $ 'T', 'T', 'T', RWORK, 4, CONDS, N, N, ANORM,
  670. $ A, LDA, WORK( N+1 ), IINFO )
  671. *
  672. ELSE IF( ITYPE.EQ.7 ) THEN
  673. *
  674. * Diagonal, random eigenvalues
  675. *
  676. CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  677. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  678. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  679. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  680. *
  681. ELSE IF( ITYPE.EQ.8 ) THEN
  682. *
  683. * Hermitian, random eigenvalues
  684. *
  685. CALL CLATMR( N, N, 'D', ISEED, 'H', WORK, 6, ONE, CONE,
  686. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  687. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  688. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  689. *
  690. ELSE IF( ITYPE.EQ.9 ) THEN
  691. *
  692. * General, random eigenvalues
  693. *
  694. CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  695. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  696. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  697. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  698. *
  699. ELSE IF( ITYPE.EQ.10 ) THEN
  700. *
  701. * Triangular, random eigenvalues
  702. *
  703. CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  704. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  705. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
  706. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  707. *
  708. ELSE
  709. *
  710. IINFO = 1
  711. END IF
  712. *
  713. IF( IINFO.NE.0 ) THEN
  714. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  715. $ IOLDSD
  716. INFO = ABS( IINFO )
  717. RETURN
  718. END IF
  719. *
  720. 100 CONTINUE
  721. *
  722. * Call CGEHRD to compute H and U, do tests.
  723. *
  724. CALL CLACPY( ' ', N, N, A, LDA, H, LDA )
  725. NTEST = 1
  726. *
  727. ILO = 1
  728. IHI = N
  729. *
  730. CALL CGEHRD( N, ILO, IHI, H, LDA, WORK, WORK( N+1 ),
  731. $ NWORK-N, IINFO )
  732. *
  733. IF( IINFO.NE.0 ) THEN
  734. RESULT( 1 ) = ULPINV
  735. WRITE( NOUNIT, FMT = 9999 )'CGEHRD', IINFO, N, JTYPE,
  736. $ IOLDSD
  737. INFO = ABS( IINFO )
  738. GO TO 240
  739. END IF
  740. *
  741. DO 120 J = 1, N - 1
  742. UU( J+1, J ) = CZERO
  743. DO 110 I = J + 2, N
  744. U( I, J ) = H( I, J )
  745. UU( I, J ) = H( I, J )
  746. H( I, J ) = CZERO
  747. 110 CONTINUE
  748. 120 CONTINUE
  749. CALL CCOPY( N-1, WORK, 1, TAU, 1 )
  750. CALL CUNGHR( N, ILO, IHI, U, LDU, WORK, WORK( N+1 ),
  751. $ NWORK-N, IINFO )
  752. NTEST = 2
  753. *
  754. CALL CHST01( N, ILO, IHI, A, LDA, H, LDA, U, LDU, WORK,
  755. $ NWORK, RWORK, RESULT( 1 ) )
  756. *
  757. * Call CHSEQR to compute T1, T2 and Z, do tests.
  758. *
  759. * Eigenvalues only (W3)
  760. *
  761. CALL CLACPY( ' ', N, N, H, LDA, T2, LDA )
  762. NTEST = 3
  763. RESULT( 3 ) = ULPINV
  764. *
  765. CALL CHSEQR( 'E', 'N', N, ILO, IHI, T2, LDA, W3, UZ, LDU,
  766. $ WORK, NWORK, IINFO )
  767. IF( IINFO.NE.0 ) THEN
  768. WRITE( NOUNIT, FMT = 9999 )'CHSEQR(E)', IINFO, N, JTYPE,
  769. $ IOLDSD
  770. IF( IINFO.LE.N+2 ) THEN
  771. INFO = ABS( IINFO )
  772. GO TO 240
  773. END IF
  774. END IF
  775. *
  776. * Eigenvalues (W1) and Full Schur Form (T2)
  777. *
  778. CALL CLACPY( ' ', N, N, H, LDA, T2, LDA )
  779. *
  780. CALL CHSEQR( 'S', 'N', N, ILO, IHI, T2, LDA, W1, UZ, LDU,
  781. $ WORK, NWORK, IINFO )
  782. IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
  783. WRITE( NOUNIT, FMT = 9999 )'CHSEQR(S)', IINFO, N, JTYPE,
  784. $ IOLDSD
  785. INFO = ABS( IINFO )
  786. GO TO 240
  787. END IF
  788. *
  789. * Eigenvalues (W1), Schur Form (T1), and Schur Vectors (UZ)
  790. *
  791. CALL CLACPY( ' ', N, N, H, LDA, T1, LDA )
  792. CALL CLACPY( ' ', N, N, U, LDU, UZ, LDU )
  793. *
  794. CALL CHSEQR( 'S', 'V', N, ILO, IHI, T1, LDA, W1, UZ, LDU,
  795. $ WORK, NWORK, IINFO )
  796. IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
  797. WRITE( NOUNIT, FMT = 9999 )'CHSEQR(V)', IINFO, N, JTYPE,
  798. $ IOLDSD
  799. INFO = ABS( IINFO )
  800. GO TO 240
  801. END IF
  802. *
  803. * Compute Z = U' UZ
  804. *
  805. CALL CGEMM( 'C', 'N', N, N, N, CONE, U, LDU, UZ, LDU, CZERO,
  806. $ Z, LDU )
  807. NTEST = 8
  808. *
  809. * Do Tests 3: | H - Z T Z' | / ( |H| n ulp )
  810. * and 4: | I - Z Z' | / ( n ulp )
  811. *
  812. CALL CHST01( N, ILO, IHI, H, LDA, T1, LDA, Z, LDU, WORK,
  813. $ NWORK, RWORK, RESULT( 3 ) )
  814. *
  815. * Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp )
  816. * and 6: | I - UZ (UZ)' | / ( n ulp )
  817. *
  818. CALL CHST01( N, ILO, IHI, A, LDA, T1, LDA, UZ, LDU, WORK,
  819. $ NWORK, RWORK, RESULT( 5 ) )
  820. *
  821. * Do Test 7: | T2 - T1 | / ( |T| n ulp )
  822. *
  823. CALL CGET10( N, N, T2, LDA, T1, LDA, WORK, RWORK,
  824. $ RESULT( 7 ) )
  825. *
  826. * Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp )
  827. *
  828. TEMP1 = ZERO
  829. TEMP2 = ZERO
  830. DO 130 J = 1, N
  831. TEMP1 = MAX( TEMP1, ABS( W1( J ) ), ABS( W3( J ) ) )
  832. TEMP2 = MAX( TEMP2, ABS( W1( J )-W3( J ) ) )
  833. 130 CONTINUE
  834. *
  835. RESULT( 8 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  836. *
  837. * Compute the Left and Right Eigenvectors of T
  838. *
  839. * Compute the Right eigenvector Matrix:
  840. *
  841. NTEST = 9
  842. RESULT( 9 ) = ULPINV
  843. *
  844. * Select every other eigenvector
  845. *
  846. DO 140 J = 1, N
  847. SELECT( J ) = .FALSE.
  848. 140 CONTINUE
  849. DO 150 J = 1, N, 2
  850. SELECT( J ) = .TRUE.
  851. 150 CONTINUE
  852. CALL CTREVC( 'Right', 'All', SELECT, N, T1, LDA, CDUMMA,
  853. $ LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO )
  854. IF( IINFO.NE.0 ) THEN
  855. WRITE( NOUNIT, FMT = 9999 )'CTREVC(R,A)', IINFO, N,
  856. $ JTYPE, IOLDSD
  857. INFO = ABS( IINFO )
  858. GO TO 240
  859. END IF
  860. *
  861. * Test 9: | TR - RW | / ( |T| |R| ulp )
  862. *
  863. CALL CGET22( 'N', 'N', 'N', N, T1, LDA, EVECTR, LDU, W1,
  864. $ WORK, RWORK, DUMMA( 1 ) )
  865. RESULT( 9 ) = DUMMA( 1 )
  866. IF( DUMMA( 2 ).GT.THRESH ) THEN
  867. WRITE( NOUNIT, FMT = 9998 )'Right', 'CTREVC',
  868. $ DUMMA( 2 ), N, JTYPE, IOLDSD
  869. END IF
  870. *
  871. * Compute selected right eigenvectors and confirm that
  872. * they agree with previous right eigenvectors
  873. *
  874. CALL CTREVC( 'Right', 'Some', SELECT, N, T1, LDA, CDUMMA,
  875. $ LDU, EVECTL, LDU, N, IN, WORK, RWORK, IINFO )
  876. IF( IINFO.NE.0 ) THEN
  877. WRITE( NOUNIT, FMT = 9999 )'CTREVC(R,S)', IINFO, N,
  878. $ JTYPE, IOLDSD
  879. INFO = ABS( IINFO )
  880. GO TO 240
  881. END IF
  882. *
  883. K = 1
  884. MATCH = .TRUE.
  885. DO 170 J = 1, N
  886. IF( SELECT( J ) ) THEN
  887. DO 160 JJ = 1, N
  888. IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) ) THEN
  889. MATCH = .FALSE.
  890. GO TO 180
  891. END IF
  892. 160 CONTINUE
  893. K = K + 1
  894. END IF
  895. 170 CONTINUE
  896. 180 CONTINUE
  897. IF( .NOT.MATCH )
  898. $ WRITE( NOUNIT, FMT = 9997 )'Right', 'CTREVC', N, JTYPE,
  899. $ IOLDSD
  900. *
  901. * Compute the Left eigenvector Matrix:
  902. *
  903. NTEST = 10
  904. RESULT( 10 ) = ULPINV
  905. CALL CTREVC( 'Left', 'All', SELECT, N, T1, LDA, EVECTL, LDU,
  906. $ CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
  907. IF( IINFO.NE.0 ) THEN
  908. WRITE( NOUNIT, FMT = 9999 )'CTREVC(L,A)', IINFO, N,
  909. $ JTYPE, IOLDSD
  910. INFO = ABS( IINFO )
  911. GO TO 240
  912. END IF
  913. *
  914. * Test 10: | LT - WL | / ( |T| |L| ulp )
  915. *
  916. CALL CGET22( 'C', 'N', 'C', N, T1, LDA, EVECTL, LDU, W1,
  917. $ WORK, RWORK, DUMMA( 3 ) )
  918. RESULT( 10 ) = DUMMA( 3 )
  919. IF( DUMMA( 4 ).GT.THRESH ) THEN
  920. WRITE( NOUNIT, FMT = 9998 )'Left', 'CTREVC', DUMMA( 4 ),
  921. $ N, JTYPE, IOLDSD
  922. END IF
  923. *
  924. * Compute selected left eigenvectors and confirm that
  925. * they agree with previous left eigenvectors
  926. *
  927. CALL CTREVC( 'Left', 'Some', SELECT, N, T1, LDA, EVECTR,
  928. $ LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
  929. IF( IINFO.NE.0 ) THEN
  930. WRITE( NOUNIT, FMT = 9999 )'CTREVC(L,S)', IINFO, N,
  931. $ JTYPE, IOLDSD
  932. INFO = ABS( IINFO )
  933. GO TO 240
  934. END IF
  935. *
  936. K = 1
  937. MATCH = .TRUE.
  938. DO 200 J = 1, N
  939. IF( SELECT( J ) ) THEN
  940. DO 190 JJ = 1, N
  941. IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) ) THEN
  942. MATCH = .FALSE.
  943. GO TO 210
  944. END IF
  945. 190 CONTINUE
  946. K = K + 1
  947. END IF
  948. 200 CONTINUE
  949. 210 CONTINUE
  950. IF( .NOT.MATCH )
  951. $ WRITE( NOUNIT, FMT = 9997 )'Left', 'CTREVC', N, JTYPE,
  952. $ IOLDSD
  953. *
  954. * Call CHSEIN for Right eigenvectors of H, do test 11
  955. *
  956. NTEST = 11
  957. RESULT( 11 ) = ULPINV
  958. DO 220 J = 1, N
  959. SELECT( J ) = .TRUE.
  960. 220 CONTINUE
  961. *
  962. CALL CHSEIN( 'Right', 'Qr', 'Ninitv', SELECT, N, H, LDA, W3,
  963. $ CDUMMA, LDU, EVECTX, LDU, N1, IN, WORK, RWORK,
  964. $ IWORK, IWORK, IINFO )
  965. IF( IINFO.NE.0 ) THEN
  966. WRITE( NOUNIT, FMT = 9999 )'CHSEIN(R)', IINFO, N, JTYPE,
  967. $ IOLDSD
  968. INFO = ABS( IINFO )
  969. IF( IINFO.LT.0 )
  970. $ GO TO 240
  971. ELSE
  972. *
  973. * Test 11: | HX - XW | / ( |H| |X| ulp )
  974. *
  975. * (from inverse iteration)
  976. *
  977. CALL CGET22( 'N', 'N', 'N', N, H, LDA, EVECTX, LDU, W3,
  978. $ WORK, RWORK, DUMMA( 1 ) )
  979. IF( DUMMA( 1 ).LT.ULPINV )
  980. $ RESULT( 11 ) = DUMMA( 1 )*ANINV
  981. IF( DUMMA( 2 ).GT.THRESH ) THEN
  982. WRITE( NOUNIT, FMT = 9998 )'Right', 'CHSEIN',
  983. $ DUMMA( 2 ), N, JTYPE, IOLDSD
  984. END IF
  985. END IF
  986. *
  987. * Call CHSEIN for Left eigenvectors of H, do test 12
  988. *
  989. NTEST = 12
  990. RESULT( 12 ) = ULPINV
  991. DO 230 J = 1, N
  992. SELECT( J ) = .TRUE.
  993. 230 CONTINUE
  994. *
  995. CALL CHSEIN( 'Left', 'Qr', 'Ninitv', SELECT, N, H, LDA, W3,
  996. $ EVECTY, LDU, CDUMMA, LDU, N1, IN, WORK, RWORK,
  997. $ IWORK, IWORK, IINFO )
  998. IF( IINFO.NE.0 ) THEN
  999. WRITE( NOUNIT, FMT = 9999 )'CHSEIN(L)', IINFO, N, JTYPE,
  1000. $ IOLDSD
  1001. INFO = ABS( IINFO )
  1002. IF( IINFO.LT.0 )
  1003. $ GO TO 240
  1004. ELSE
  1005. *
  1006. * Test 12: | YH - WY | / ( |H| |Y| ulp )
  1007. *
  1008. * (from inverse iteration)
  1009. *
  1010. CALL CGET22( 'C', 'N', 'C', N, H, LDA, EVECTY, LDU, W3,
  1011. $ WORK, RWORK, DUMMA( 3 ) )
  1012. IF( DUMMA( 3 ).LT.ULPINV )
  1013. $ RESULT( 12 ) = DUMMA( 3 )*ANINV
  1014. IF( DUMMA( 4 ).GT.THRESH ) THEN
  1015. WRITE( NOUNIT, FMT = 9998 )'Left', 'CHSEIN',
  1016. $ DUMMA( 4 ), N, JTYPE, IOLDSD
  1017. END IF
  1018. END IF
  1019. *
  1020. * Call CUNMHR for Right eigenvectors of A, do test 13
  1021. *
  1022. NTEST = 13
  1023. RESULT( 13 ) = ULPINV
  1024. *
  1025. CALL CUNMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
  1026. $ LDU, TAU, EVECTX, LDU, WORK, NWORK, IINFO )
  1027. IF( IINFO.NE.0 ) THEN
  1028. WRITE( NOUNIT, FMT = 9999 )'CUNMHR(L)', IINFO, N, JTYPE,
  1029. $ IOLDSD
  1030. INFO = ABS( IINFO )
  1031. IF( IINFO.LT.0 )
  1032. $ GO TO 240
  1033. ELSE
  1034. *
  1035. * Test 13: | AX - XW | / ( |A| |X| ulp )
  1036. *
  1037. * (from inverse iteration)
  1038. *
  1039. CALL CGET22( 'N', 'N', 'N', N, A, LDA, EVECTX, LDU, W3,
  1040. $ WORK, RWORK, DUMMA( 1 ) )
  1041. IF( DUMMA( 1 ).LT.ULPINV )
  1042. $ RESULT( 13 ) = DUMMA( 1 )*ANINV
  1043. END IF
  1044. *
  1045. * Call CUNMHR for Left eigenvectors of A, do test 14
  1046. *
  1047. NTEST = 14
  1048. RESULT( 14 ) = ULPINV
  1049. *
  1050. CALL CUNMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
  1051. $ LDU, TAU, EVECTY, LDU, WORK, NWORK, IINFO )
  1052. IF( IINFO.NE.0 ) THEN
  1053. WRITE( NOUNIT, FMT = 9999 )'CUNMHR(L)', IINFO, N, JTYPE,
  1054. $ IOLDSD
  1055. INFO = ABS( IINFO )
  1056. IF( IINFO.LT.0 )
  1057. $ GO TO 240
  1058. ELSE
  1059. *
  1060. * Test 14: | YA - WY | / ( |A| |Y| ulp )
  1061. *
  1062. * (from inverse iteration)
  1063. *
  1064. CALL CGET22( 'C', 'N', 'C', N, A, LDA, EVECTY, LDU, W3,
  1065. $ WORK, RWORK, DUMMA( 3 ) )
  1066. IF( DUMMA( 3 ).LT.ULPINV )
  1067. $ RESULT( 14 ) = DUMMA( 3 )*ANINV
  1068. END IF
  1069. *
  1070. * End of Loop -- Check for RESULT(j) > THRESH
  1071. *
  1072. 240 CONTINUE
  1073. *
  1074. NTESTT = NTESTT + NTEST
  1075. CALL SLAFTS( 'CHS', N, N, JTYPE, NTEST, RESULT, IOLDSD,
  1076. $ THRESH, NOUNIT, NERRS )
  1077. *
  1078. 250 CONTINUE
  1079. 260 CONTINUE
  1080. *
  1081. * Summary
  1082. *
  1083. CALL SLASUM( 'CHS', NOUNIT, NERRS, NTESTT )
  1084. *
  1085. RETURN
  1086. *
  1087. 9999 FORMAT( ' CCHKHS: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  1088. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1089. 9998 FORMAT( ' CCHKHS: ', A, ' Eigenvectors from ', A, ' incorrectly ',
  1090. $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
  1091. $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
  1092. $ ')' )
  1093. 9997 FORMAT( ' CCHKHS: Selected ', A, ' Eigenvectors from ', A,
  1094. $ ' do not match other eigenvectors ', 9X, 'N=', I6,
  1095. $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1096. *
  1097. * End of CCHKHS
  1098. *
  1099. END