You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sla_porcond.f 8.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325
  1. *> \brief \b SLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLA_PORCOND + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_porcond.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_porcond.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_porcond.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION SLA_PORCOND( UPLO, N, A, LDA, AF, LDAF, CMODE, C,
  22. * INFO, WORK, IWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER N, LDA, LDAF, INFO, CMODE
  27. * REAL A( LDA, * ), AF( LDAF, * ), WORK( * ),
  28. * $ C( * )
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IWORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> SLA_PORCOND Estimates the Skeel condition number of op(A) * op2(C)
  41. *> where op2 is determined by CMODE as follows
  42. *> CMODE = 1 op2(C) = C
  43. *> CMODE = 0 op2(C) = I
  44. *> CMODE = -1 op2(C) = inv(C)
  45. *> The Skeel condition number cond(A) = norminf( |inv(A)||A| )
  46. *> is computed by computing scaling factors R such that
  47. *> diag(R)*A*op2(C) is row equilibrated and computing the standard
  48. *> infinity-norm condition number.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] UPLO
  55. *> \verbatim
  56. *> UPLO is CHARACTER*1
  57. *> = 'U': Upper triangle of A is stored;
  58. *> = 'L': Lower triangle of A is stored.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The number of linear equations, i.e., the order of the
  65. *> matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] A
  69. *> \verbatim
  70. *> A is REAL array, dimension (LDA,N)
  71. *> On entry, the N-by-N matrix A.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LDA
  75. *> \verbatim
  76. *> LDA is INTEGER
  77. *> The leading dimension of the array A. LDA >= max(1,N).
  78. *> \endverbatim
  79. *>
  80. *> \param[in] AF
  81. *> \verbatim
  82. *> AF is REAL array, dimension (LDAF,N)
  83. *> The triangular factor U or L from the Cholesky factorization
  84. *> A = U**T*U or A = L*L**T, as computed by SPOTRF.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] LDAF
  88. *> \verbatim
  89. *> LDAF is INTEGER
  90. *> The leading dimension of the array AF. LDAF >= max(1,N).
  91. *> \endverbatim
  92. *>
  93. *> \param[in] CMODE
  94. *> \verbatim
  95. *> CMODE is INTEGER
  96. *> Determines op2(C) in the formula op(A) * op2(C) as follows:
  97. *> CMODE = 1 op2(C) = C
  98. *> CMODE = 0 op2(C) = I
  99. *> CMODE = -1 op2(C) = inv(C)
  100. *> \endverbatim
  101. *>
  102. *> \param[in] C
  103. *> \verbatim
  104. *> C is REAL array, dimension (N)
  105. *> The vector C in the formula op(A) * op2(C).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] INFO
  109. *> \verbatim
  110. *> INFO is INTEGER
  111. *> = 0: Successful exit.
  112. *> i > 0: The ith argument is invalid.
  113. *> \endverbatim
  114. *>
  115. *> \param[out] WORK
  116. *> \verbatim
  117. *> WORK is REAL array, dimension (3*N).
  118. *> Workspace.
  119. *> \endverbatim
  120. *>
  121. *> \param[out] IWORK
  122. *> \verbatim
  123. *> IWORK is INTEGER array, dimension (N).
  124. *> Workspace.
  125. *> \endverbatim
  126. *
  127. * Authors:
  128. * ========
  129. *
  130. *> \author Univ. of Tennessee
  131. *> \author Univ. of California Berkeley
  132. *> \author Univ. of Colorado Denver
  133. *> \author NAG Ltd.
  134. *
  135. *> \ingroup realPOcomputational
  136. *
  137. * =====================================================================
  138. REAL FUNCTION SLA_PORCOND( UPLO, N, A, LDA, AF, LDAF, CMODE, C,
  139. $ INFO, WORK, IWORK )
  140. *
  141. * -- LAPACK computational routine --
  142. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  143. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  144. *
  145. * .. Scalar Arguments ..
  146. CHARACTER UPLO
  147. INTEGER N, LDA, LDAF, INFO, CMODE
  148. REAL A( LDA, * ), AF( LDAF, * ), WORK( * ),
  149. $ C( * )
  150. * ..
  151. * .. Array Arguments ..
  152. INTEGER IWORK( * )
  153. * ..
  154. *
  155. * =====================================================================
  156. *
  157. * .. Local Scalars ..
  158. INTEGER KASE, I, J
  159. REAL AINVNM, TMP
  160. LOGICAL UP
  161. * ..
  162. * .. Array Arguments ..
  163. INTEGER ISAVE( 3 )
  164. * ..
  165. * .. External Functions ..
  166. LOGICAL LSAME
  167. EXTERNAL LSAME
  168. * ..
  169. * .. External Subroutines ..
  170. EXTERNAL SLACN2, SPOTRS, XERBLA
  171. * ..
  172. * .. Intrinsic Functions ..
  173. INTRINSIC ABS, MAX
  174. * ..
  175. * .. Executable Statements ..
  176. *
  177. SLA_PORCOND = 0.0
  178. *
  179. INFO = 0
  180. IF( N.LT.0 ) THEN
  181. INFO = -2
  182. END IF
  183. IF( INFO.NE.0 ) THEN
  184. CALL XERBLA( 'SLA_PORCOND', -INFO )
  185. RETURN
  186. END IF
  187. IF( N.EQ.0 ) THEN
  188. SLA_PORCOND = 1.0
  189. RETURN
  190. END IF
  191. UP = .FALSE.
  192. IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  193. *
  194. * Compute the equilibration matrix R such that
  195. * inv(R)*A*C has unit 1-norm.
  196. *
  197. IF ( UP ) THEN
  198. DO I = 1, N
  199. TMP = 0.0
  200. IF ( CMODE .EQ. 1 ) THEN
  201. DO J = 1, I
  202. TMP = TMP + ABS( A( J, I ) * C( J ) )
  203. END DO
  204. DO J = I+1, N
  205. TMP = TMP + ABS( A( I, J ) * C( J ) )
  206. END DO
  207. ELSE IF ( CMODE .EQ. 0 ) THEN
  208. DO J = 1, I
  209. TMP = TMP + ABS( A( J, I ) )
  210. END DO
  211. DO J = I+1, N
  212. TMP = TMP + ABS( A( I, J ) )
  213. END DO
  214. ELSE
  215. DO J = 1, I
  216. TMP = TMP + ABS( A( J ,I ) / C( J ) )
  217. END DO
  218. DO J = I+1, N
  219. TMP = TMP + ABS( A( I, J ) / C( J ) )
  220. END DO
  221. END IF
  222. WORK( 2*N+I ) = TMP
  223. END DO
  224. ELSE
  225. DO I = 1, N
  226. TMP = 0.0
  227. IF ( CMODE .EQ. 1 ) THEN
  228. DO J = 1, I
  229. TMP = TMP + ABS( A( I, J ) * C( J ) )
  230. END DO
  231. DO J = I+1, N
  232. TMP = TMP + ABS( A( J, I ) * C( J ) )
  233. END DO
  234. ELSE IF ( CMODE .EQ. 0 ) THEN
  235. DO J = 1, I
  236. TMP = TMP + ABS( A( I, J ) )
  237. END DO
  238. DO J = I+1, N
  239. TMP = TMP + ABS( A( J, I ) )
  240. END DO
  241. ELSE
  242. DO J = 1, I
  243. TMP = TMP + ABS( A( I, J ) / C( J ) )
  244. END DO
  245. DO J = I+1, N
  246. TMP = TMP + ABS( A( J, I ) / C( J ) )
  247. END DO
  248. END IF
  249. WORK( 2*N+I ) = TMP
  250. END DO
  251. ENDIF
  252. *
  253. * Estimate the norm of inv(op(A)).
  254. *
  255. AINVNM = 0.0
  256. KASE = 0
  257. 10 CONTINUE
  258. CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  259. IF( KASE.NE.0 ) THEN
  260. IF( KASE.EQ.2 ) THEN
  261. *
  262. * Multiply by R.
  263. *
  264. DO I = 1, N
  265. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  266. END DO
  267. IF (UP) THEN
  268. CALL SPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
  269. ELSE
  270. CALL SPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
  271. ENDIF
  272. *
  273. * Multiply by inv(C).
  274. *
  275. IF ( CMODE .EQ. 1 ) THEN
  276. DO I = 1, N
  277. WORK( I ) = WORK( I ) / C( I )
  278. END DO
  279. ELSE IF ( CMODE .EQ. -1 ) THEN
  280. DO I = 1, N
  281. WORK( I ) = WORK( I ) * C( I )
  282. END DO
  283. END IF
  284. ELSE
  285. *
  286. * Multiply by inv(C**T).
  287. *
  288. IF ( CMODE .EQ. 1 ) THEN
  289. DO I = 1, N
  290. WORK( I ) = WORK( I ) / C( I )
  291. END DO
  292. ELSE IF ( CMODE .EQ. -1 ) THEN
  293. DO I = 1, N
  294. WORK( I ) = WORK( I ) * C( I )
  295. END DO
  296. END IF
  297. IF ( UP ) THEN
  298. CALL SPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
  299. ELSE
  300. CALL SPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
  301. ENDIF
  302. *
  303. * Multiply by R.
  304. *
  305. DO I = 1, N
  306. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  307. END DO
  308. END IF
  309. GO TO 10
  310. END IF
  311. *
  312. * Compute the estimate of the reciprocal condition number.
  313. *
  314. IF( AINVNM .NE. 0.0 )
  315. $ SLA_PORCOND = ( 1.0 / AINVNM )
  316. *
  317. RETURN
  318. *
  319. * End of SLA_PORCOND
  320. *
  321. END