You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbt21.f 8.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. *> \brief \b CHBT21
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
  12. * RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER KA, KS, LDA, LDU, N
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
  20. * COMPLEX A( LDA, * ), U( LDU, * ), WORK( * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> CHBT21 generally checks a decomposition of the form
  30. *>
  31. *> A = U S UC>
  32. *> where * means conjugate transpose, A is hermitian banded, U is
  33. *> unitary, and S is diagonal (if KS=0) or symmetric
  34. *> tridiagonal (if KS=1).
  35. *>
  36. *> Specifically:
  37. *>
  38. *> RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU* | / ( n ulp )
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] UPLO
  45. *> \verbatim
  46. *> UPLO is CHARACTER
  47. *> If UPLO='U', the upper triangle of A and V will be used and
  48. *> the (strictly) lower triangle will not be referenced.
  49. *> If UPLO='L', the lower triangle of A and V will be used and
  50. *> the (strictly) upper triangle will not be referenced.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> The size of the matrix. If it is zero, CHBT21 does nothing.
  57. *> It must be at least zero.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] KA
  61. *> \verbatim
  62. *> KA is INTEGER
  63. *> The bandwidth of the matrix A. It must be at least zero. If
  64. *> it is larger than N-1, then max( 0, N-1 ) will be used.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] KS
  68. *> \verbatim
  69. *> KS is INTEGER
  70. *> The bandwidth of the matrix S. It may only be zero or one.
  71. *> If zero, then S is diagonal, and E is not referenced. If
  72. *> one, then S is symmetric tri-diagonal.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] A
  76. *> \verbatim
  77. *> A is COMPLEX array, dimension (LDA, N)
  78. *> The original (unfactored) matrix. It is assumed to be
  79. *> hermitian, and only the upper (UPLO='U') or only the lower
  80. *> (UPLO='L') will be referenced.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of A. It must be at least 1
  87. *> and at least min( KA, N-1 ).
  88. *> \endverbatim
  89. *>
  90. *> \param[in] D
  91. *> \verbatim
  92. *> D is REAL array, dimension (N)
  93. *> The diagonal of the (symmetric tri-) diagonal matrix S.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] E
  97. *> \verbatim
  98. *> E is REAL array, dimension (N-1)
  99. *> The off-diagonal of the (symmetric tri-) diagonal matrix S.
  100. *> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
  101. *> (3,2) element, etc.
  102. *> Not referenced if KS=0.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] U
  106. *> \verbatim
  107. *> U is COMPLEX array, dimension (LDU, N)
  108. *> The unitary matrix in the decomposition, expressed as a
  109. *> dense matrix (i.e., not as a product of Householder
  110. *> transformations, Givens transformations, etc.)
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDU
  114. *> \verbatim
  115. *> LDU is INTEGER
  116. *> The leading dimension of U. LDU must be at least N and
  117. *> at least 1.
  118. *> \endverbatim
  119. *>
  120. *> \param[out] WORK
  121. *> \verbatim
  122. *> WORK is COMPLEX array, dimension (N**2)
  123. *> \endverbatim
  124. *>
  125. *> \param[out] RWORK
  126. *> \verbatim
  127. *> RWORK is REAL array, dimension (N)
  128. *> \endverbatim
  129. *>
  130. *> \param[out] RESULT
  131. *> \verbatim
  132. *> RESULT is REAL array, dimension (2)
  133. *> The values computed by the two tests described above. The
  134. *> values are currently limited to 1/ulp, to avoid overflow.
  135. *> \endverbatim
  136. *
  137. * Authors:
  138. * ========
  139. *
  140. *> \author Univ. of Tennessee
  141. *> \author Univ. of California Berkeley
  142. *> \author Univ. of Colorado Denver
  143. *> \author NAG Ltd.
  144. *
  145. *> \date November 2011
  146. *
  147. *> \ingroup complex_eig
  148. *
  149. * =====================================================================
  150. SUBROUTINE CHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
  151. $ RWORK, RESULT )
  152. *
  153. * -- LAPACK test routine (version 3.4.0) --
  154. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  155. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156. * November 2011
  157. *
  158. * .. Scalar Arguments ..
  159. CHARACTER UPLO
  160. INTEGER KA, KS, LDA, LDU, N
  161. * ..
  162. * .. Array Arguments ..
  163. REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
  164. COMPLEX A( LDA, * ), U( LDU, * ), WORK( * )
  165. * ..
  166. *
  167. * =====================================================================
  168. *
  169. * .. Parameters ..
  170. COMPLEX CZERO, CONE
  171. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  172. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  173. REAL ZERO, ONE
  174. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  175. * ..
  176. * .. Local Scalars ..
  177. LOGICAL LOWER
  178. CHARACTER CUPLO
  179. INTEGER IKA, J, JC, JR
  180. REAL ANORM, ULP, UNFL, WNORM
  181. * ..
  182. * .. External Functions ..
  183. LOGICAL LSAME
  184. REAL CLANGE, CLANHB, CLANHP, SLAMCH
  185. EXTERNAL LSAME, CLANGE, CLANHB, CLANHP, SLAMCH
  186. * ..
  187. * .. External Subroutines ..
  188. EXTERNAL CGEMM, CHPR, CHPR2
  189. * ..
  190. * .. Intrinsic Functions ..
  191. INTRINSIC CMPLX, MAX, MIN, REAL
  192. * ..
  193. * .. Executable Statements ..
  194. *
  195. * Constants
  196. *
  197. RESULT( 1 ) = ZERO
  198. RESULT( 2 ) = ZERO
  199. IF( N.LE.0 )
  200. $ RETURN
  201. *
  202. IKA = MAX( 0, MIN( N-1, KA ) )
  203. *
  204. IF( LSAME( UPLO, 'U' ) ) THEN
  205. LOWER = .FALSE.
  206. CUPLO = 'U'
  207. ELSE
  208. LOWER = .TRUE.
  209. CUPLO = 'L'
  210. END IF
  211. *
  212. UNFL = SLAMCH( 'Safe minimum' )
  213. ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
  214. *
  215. * Some Error Checks
  216. *
  217. * Do Test 1
  218. *
  219. * Norm of A:
  220. *
  221. ANORM = MAX( CLANHB( '1', CUPLO, N, IKA, A, LDA, RWORK ), UNFL )
  222. *
  223. * Compute error matrix: Error = A - U S U*
  224. *
  225. * Copy A from SB to SP storage format.
  226. *
  227. J = 0
  228. DO 50 JC = 1, N
  229. IF( LOWER ) THEN
  230. DO 10 JR = 1, MIN( IKA+1, N+1-JC )
  231. J = J + 1
  232. WORK( J ) = A( JR, JC )
  233. 10 CONTINUE
  234. DO 20 JR = IKA + 2, N + 1 - JC
  235. J = J + 1
  236. WORK( J ) = ZERO
  237. 20 CONTINUE
  238. ELSE
  239. DO 30 JR = IKA + 2, JC
  240. J = J + 1
  241. WORK( J ) = ZERO
  242. 30 CONTINUE
  243. DO 40 JR = MIN( IKA, JC-1 ), 0, -1
  244. J = J + 1
  245. WORK( J ) = A( IKA+1-JR, JC )
  246. 40 CONTINUE
  247. END IF
  248. 50 CONTINUE
  249. *
  250. DO 60 J = 1, N
  251. CALL CHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
  252. 60 CONTINUE
  253. *
  254. IF( N.GT.1 .AND. KS.EQ.1 ) THEN
  255. DO 70 J = 1, N - 1
  256. CALL CHPR2( CUPLO, N, -CMPLX( E( J ) ), U( 1, J ), 1,
  257. $ U( 1, J+1 ), 1, WORK )
  258. 70 CONTINUE
  259. END IF
  260. WNORM = CLANHP( '1', CUPLO, N, WORK, RWORK )
  261. *
  262. IF( ANORM.GT.WNORM ) THEN
  263. RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
  264. ELSE
  265. IF( ANORM.LT.ONE ) THEN
  266. RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
  267. ELSE
  268. RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
  269. END IF
  270. END IF
  271. *
  272. * Do Test 2
  273. *
  274. * Compute UU* - I
  275. *
  276. CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK,
  277. $ N )
  278. *
  279. DO 80 J = 1, N
  280. WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
  281. 80 CONTINUE
  282. *
  283. RESULT( 2 ) = MIN( CLANGE( '1', N, N, WORK, N, RWORK ),
  284. $ REAL( N ) ) / ( N*ULP )
  285. *
  286. RETURN
  287. *
  288. * End of CHBT21
  289. *
  290. END