You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cdrvvx.f 35 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998
  1. *> \brief \b CDRVVX
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CDRVVX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NIUNIT, NOUNIT, A, LDA, H, W, W1, VL, LDVL, VR,
  13. * LDVR, LRE, LDLRE, RCONDV, RCNDV1, RCDVIN,
  14. * RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, RESULT,
  15. * WORK, NWORK, RWORK, INFO )
  16. *
  17. * .. Scalar Arguments ..
  18. * INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT,
  19. * $ NSIZES, NTYPES, NWORK
  20. * REAL THRESH
  21. * ..
  22. * .. Array Arguments ..
  23. * LOGICAL DOTYPE( * )
  24. * INTEGER ISEED( 4 ), NN( * )
  25. * REAL RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
  26. * $ RCNDV1( * ), RCONDE( * ), RCONDV( * ),
  27. * $ RESULT( 11 ), RWORK( * ), SCALE( * ),
  28. * $ SCALE1( * )
  29. * COMPLEX A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
  30. * $ VL( LDVL, * ), VR( LDVR, * ), W( * ), W1( * ),
  31. * $ WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CDRVVX checks the nonsymmetric eigenvalue problem expert driver
  41. *> CGEEVX.
  42. *>
  43. *> CDRVVX uses both test matrices generated randomly depending on
  44. *> data supplied in the calling sequence, as well as on data
  45. *> read from an input file and including precomputed condition
  46. *> numbers to which it compares the ones it computes.
  47. *>
  48. *> When CDRVVX is called, a number of matrix "sizes" ("n's") and a
  49. *> number of matrix "types" are specified in the calling sequence.
  50. *> For each size ("n") and each type of matrix, one matrix will be
  51. *> generated and used to test the nonsymmetric eigenroutines. For
  52. *> each matrix, 9 tests will be performed:
  53. *>
  54. *> (1) | A * VR - VR * W | / ( n |A| ulp )
  55. *>
  56. *> Here VR is the matrix of unit right eigenvectors.
  57. *> W is a diagonal matrix with diagonal entries W(j).
  58. *>
  59. *> (2) | A**H * VL - VL * W**H | / ( n |A| ulp )
  60. *>
  61. *> Here VL is the matrix of unit left eigenvectors, A**H is the
  62. *> conjugate transpose of A, and W is as above.
  63. *>
  64. *> (3) | |VR(i)| - 1 | / ulp and largest component real
  65. *>
  66. *> VR(i) denotes the i-th column of VR.
  67. *>
  68. *> (4) | |VL(i)| - 1 | / ulp and largest component real
  69. *>
  70. *> VL(i) denotes the i-th column of VL.
  71. *>
  72. *> (5) W(full) = W(partial)
  73. *>
  74. *> W(full) denotes the eigenvalues computed when VR, VL, RCONDV
  75. *> and RCONDE are also computed, and W(partial) denotes the
  76. *> eigenvalues computed when only some of VR, VL, RCONDV, and
  77. *> RCONDE are computed.
  78. *>
  79. *> (6) VR(full) = VR(partial)
  80. *>
  81. *> VR(full) denotes the right eigenvectors computed when VL, RCONDV
  82. *> and RCONDE are computed, and VR(partial) denotes the result
  83. *> when only some of VL and RCONDV are computed.
  84. *>
  85. *> (7) VL(full) = VL(partial)
  86. *>
  87. *> VL(full) denotes the left eigenvectors computed when VR, RCONDV
  88. *> and RCONDE are computed, and VL(partial) denotes the result
  89. *> when only some of VR and RCONDV are computed.
  90. *>
  91. *> (8) 0 if SCALE, ILO, IHI, ABNRM (full) =
  92. *> SCALE, ILO, IHI, ABNRM (partial)
  93. *> 1/ulp otherwise
  94. *>
  95. *> SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.
  96. *> (full) is when VR, VL, RCONDE and RCONDV are also computed, and
  97. *> (partial) is when some are not computed.
  98. *>
  99. *> (9) RCONDV(full) = RCONDV(partial)
  100. *>
  101. *> RCONDV(full) denotes the reciprocal condition numbers of the
  102. *> right eigenvectors computed when VR, VL and RCONDE are also
  103. *> computed. RCONDV(partial) denotes the reciprocal condition
  104. *> numbers when only some of VR, VL and RCONDE are computed.
  105. *>
  106. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  107. *> each element NN(j) specifies one size.
  108. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  109. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  110. *> Currently, the list of possible types is:
  111. *>
  112. *> (1) The zero matrix.
  113. *> (2) The identity matrix.
  114. *> (3) A (transposed) Jordan block, with 1's on the diagonal.
  115. *>
  116. *> (4) A diagonal matrix with evenly spaced entries
  117. *> 1, ..., ULP and random complex angles.
  118. *> (ULP = (first number larger than 1) - 1 )
  119. *> (5) A diagonal matrix with geometrically spaced entries
  120. *> 1, ..., ULP and random complex angles.
  121. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  122. *> and random complex angles.
  123. *>
  124. *> (7) Same as (4), but multiplied by a constant near
  125. *> the overflow threshold
  126. *> (8) Same as (4), but multiplied by a constant near
  127. *> the underflow threshold
  128. *>
  129. *> (9) A matrix of the form U' T U, where U is unitary and
  130. *> T has evenly spaced entries 1, ..., ULP with random complex
  131. *> angles on the diagonal and random O(1) entries in the upper
  132. *> triangle.
  133. *>
  134. *> (10) A matrix of the form U' T U, where U is unitary and
  135. *> T has geometrically spaced entries 1, ..., ULP with random
  136. *> complex angles on the diagonal and random O(1) entries in
  137. *> the upper triangle.
  138. *>
  139. *> (11) A matrix of the form U' T U, where U is unitary and
  140. *> T has "clustered" entries 1, ULP,..., ULP with random
  141. *> complex angles on the diagonal and random O(1) entries in
  142. *> the upper triangle.
  143. *>
  144. *> (12) A matrix of the form U' T U, where U is unitary and
  145. *> T has complex eigenvalues randomly chosen from
  146. *> ULP < |z| < 1 and random O(1) entries in the upper
  147. *> triangle.
  148. *>
  149. *> (13) A matrix of the form X' T X, where X has condition
  150. *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
  151. *> with random complex angles on the diagonal and random O(1)
  152. *> entries in the upper triangle.
  153. *>
  154. *> (14) A matrix of the form X' T X, where X has condition
  155. *> SQRT( ULP ) and T has geometrically spaced entries
  156. *> 1, ..., ULP with random complex angles on the diagonal
  157. *> and random O(1) entries in the upper triangle.
  158. *>
  159. *> (15) A matrix of the form X' T X, where X has condition
  160. *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
  161. *> with random complex angles on the diagonal and random O(1)
  162. *> entries in the upper triangle.
  163. *>
  164. *> (16) A matrix of the form X' T X, where X has condition
  165. *> SQRT( ULP ) and T has complex eigenvalues randomly chosen
  166. *> from ULP < |z| < 1 and random O(1) entries in the upper
  167. *> triangle.
  168. *>
  169. *> (17) Same as (16), but multiplied by a constant
  170. *> near the overflow threshold
  171. *> (18) Same as (16), but multiplied by a constant
  172. *> near the underflow threshold
  173. *>
  174. *> (19) Nonsymmetric matrix with random entries chosen from |z| < 1
  175. *> If N is at least 4, all entries in first two rows and last
  176. *> row, and first column and last two columns are zero.
  177. *> (20) Same as (19), but multiplied by a constant
  178. *> near the overflow threshold
  179. *> (21) Same as (19), but multiplied by a constant
  180. *> near the underflow threshold
  181. *>
  182. *> In addition, an input file will be read from logical unit number
  183. *> NIUNIT. The file contains matrices along with precomputed
  184. *> eigenvalues and reciprocal condition numbers for the eigenvalues
  185. *> and right eigenvectors. For these matrices, in addition to tests
  186. *> (1) to (9) we will compute the following two tests:
  187. *>
  188. *> (10) |RCONDV - RCDVIN| / cond(RCONDV)
  189. *>
  190. *> RCONDV is the reciprocal right eigenvector condition number
  191. *> computed by CGEEVX and RCDVIN (the precomputed true value)
  192. *> is supplied as input. cond(RCONDV) is the condition number of
  193. *> RCONDV, and takes errors in computing RCONDV into account, so
  194. *> that the resulting quantity should be O(ULP). cond(RCONDV) is
  195. *> essentially given by norm(A)/RCONDE.
  196. *>
  197. *> (11) |RCONDE - RCDEIN| / cond(RCONDE)
  198. *>
  199. *> RCONDE is the reciprocal eigenvalue condition number
  200. *> computed by CGEEVX and RCDEIN (the precomputed true value)
  201. *> is supplied as input. cond(RCONDE) is the condition number
  202. *> of RCONDE, and takes errors in computing RCONDE into account,
  203. *> so that the resulting quantity should be O(ULP). cond(RCONDE)
  204. *> is essentially given by norm(A)/RCONDV.
  205. *> \endverbatim
  206. *
  207. * Arguments:
  208. * ==========
  209. *
  210. *> \param[in] NSIZES
  211. *> \verbatim
  212. *> NSIZES is INTEGER
  213. *> The number of sizes of matrices to use. NSIZES must be at
  214. *> least zero. If it is zero, no randomly generated matrices
  215. *> are tested, but any test matrices read from NIUNIT will be
  216. *> tested.
  217. *> \endverbatim
  218. *>
  219. *> \param[in] NN
  220. *> \verbatim
  221. *> NN is INTEGER array, dimension (NSIZES)
  222. *> An array containing the sizes to be used for the matrices.
  223. *> Zero values will be skipped. The values must be at least
  224. *> zero.
  225. *> \endverbatim
  226. *>
  227. *> \param[in] NTYPES
  228. *> \verbatim
  229. *> NTYPES is INTEGER
  230. *> The number of elements in DOTYPE. NTYPES must be at least
  231. *> zero. If it is zero, no randomly generated test matrices
  232. *> are tested, but and test matrices read from NIUNIT will be
  233. *> tested. If it is MAXTYP+1 and NSIZES is 1, then an
  234. *> additional type, MAXTYP+1 is defined, which is to use
  235. *> whatever matrix is in A. This is only useful if
  236. *> DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. .
  237. *> \endverbatim
  238. *>
  239. *> \param[in] DOTYPE
  240. *> \verbatim
  241. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  242. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  243. *> matrix of that size and of type j will be generated.
  244. *> If NTYPES is smaller than the maximum number of types
  245. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  246. *> MAXTYP will not be generated. If NTYPES is larger
  247. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  248. *> will be ignored.
  249. *> \endverbatim
  250. *>
  251. *> \param[in,out] ISEED
  252. *> \verbatim
  253. *> ISEED is INTEGER array, dimension (4)
  254. *> On entry ISEED specifies the seed of the random number
  255. *> generator. The array elements should be between 0 and 4095;
  256. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  257. *> be odd. The random number generator uses a linear
  258. *> congruential sequence limited to small integers, and so
  259. *> should produce machine independent random numbers. The
  260. *> values of ISEED are changed on exit, and can be used in the
  261. *> next call to CDRVVX to continue the same random number
  262. *> sequence.
  263. *> \endverbatim
  264. *>
  265. *> \param[in] THRESH
  266. *> \verbatim
  267. *> THRESH is REAL
  268. *> A test will count as "failed" if the "error", computed as
  269. *> described above, exceeds THRESH. Note that the error
  270. *> is scaled to be O(1), so THRESH should be a reasonably
  271. *> small multiple of 1, e.g., 10 or 100. In particular,
  272. *> it should not depend on the precision (single vs. double)
  273. *> or the size of the matrix. It must be at least zero.
  274. *> \endverbatim
  275. *>
  276. *> \param[in] NIUNIT
  277. *> \verbatim
  278. *> NIUNIT is INTEGER
  279. *> The FORTRAN unit number for reading in the data file of
  280. *> problems to solve.
  281. *> \endverbatim
  282. *>
  283. *> \param[in] NOUNIT
  284. *> \verbatim
  285. *> NOUNIT is INTEGER
  286. *> The FORTRAN unit number for printing out error messages
  287. *> (e.g., if a routine returns INFO not equal to 0.)
  288. *> \endverbatim
  289. *>
  290. *> \param[out] A
  291. *> \verbatim
  292. *> A is COMPLEX array, dimension (LDA, max(NN,12))
  293. *> Used to hold the matrix whose eigenvalues are to be
  294. *> computed. On exit, A contains the last matrix actually used.
  295. *> \endverbatim
  296. *>
  297. *> \param[in] LDA
  298. *> \verbatim
  299. *> LDA is INTEGER
  300. *> The leading dimension of A, and H. LDA must be at
  301. *> least 1 and at least max( NN, 12 ). (12 is the
  302. *> dimension of the largest matrix on the precomputed
  303. *> input file.)
  304. *> \endverbatim
  305. *>
  306. *> \param[out] H
  307. *> \verbatim
  308. *> H is COMPLEX array, dimension (LDA, max(NN,12))
  309. *> Another copy of the test matrix A, modified by CGEEVX.
  310. *> \endverbatim
  311. *>
  312. *> \param[out] W
  313. *> \verbatim
  314. *> W is COMPLEX array, dimension (max(NN,12))
  315. *> Contains the eigenvalues of A.
  316. *> \endverbatim
  317. *>
  318. *> \param[out] W1
  319. *> \verbatim
  320. *> W1 is COMPLEX array, dimension (max(NN,12))
  321. *> Like W, this array contains the eigenvalues of A,
  322. *> but those computed when CGEEVX only computes a partial
  323. *> eigendecomposition, i.e. not the eigenvalues and left
  324. *> and right eigenvectors.
  325. *> \endverbatim
  326. *>
  327. *> \param[out] VL
  328. *> \verbatim
  329. *> VL is COMPLEX array, dimension (LDVL, max(NN,12))
  330. *> VL holds the computed left eigenvectors.
  331. *> \endverbatim
  332. *>
  333. *> \param[in] LDVL
  334. *> \verbatim
  335. *> LDVL is INTEGER
  336. *> Leading dimension of VL. Must be at least max(1,max(NN,12)).
  337. *> \endverbatim
  338. *>
  339. *> \param[out] VR
  340. *> \verbatim
  341. *> VR is COMPLEX array, dimension (LDVR, max(NN,12))
  342. *> VR holds the computed right eigenvectors.
  343. *> \endverbatim
  344. *>
  345. *> \param[in] LDVR
  346. *> \verbatim
  347. *> LDVR is INTEGER
  348. *> Leading dimension of VR. Must be at least max(1,max(NN,12)).
  349. *> \endverbatim
  350. *>
  351. *> \param[out] LRE
  352. *> \verbatim
  353. *> LRE is COMPLEX array, dimension (LDLRE, max(NN,12))
  354. *> LRE holds the computed right or left eigenvectors.
  355. *> \endverbatim
  356. *>
  357. *> \param[in] LDLRE
  358. *> \verbatim
  359. *> LDLRE is INTEGER
  360. *> Leading dimension of LRE. Must be at least max(1,max(NN,12))
  361. *> \endverbatim
  362. *>
  363. *> \param[out] RCONDV
  364. *> \verbatim
  365. *> RCONDV is REAL array, dimension (N)
  366. *> RCONDV holds the computed reciprocal condition numbers
  367. *> for eigenvectors.
  368. *> \endverbatim
  369. *>
  370. *> \param[out] RCNDV1
  371. *> \verbatim
  372. *> RCNDV1 is REAL array, dimension (N)
  373. *> RCNDV1 holds more computed reciprocal condition numbers
  374. *> for eigenvectors.
  375. *> \endverbatim
  376. *>
  377. *> \param[in] RCDVIN
  378. *> \verbatim
  379. *> RCDVIN is REAL array, dimension (N)
  380. *> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal
  381. *> condition numbers for eigenvectors to be compared with
  382. *> RCONDV.
  383. *> \endverbatim
  384. *>
  385. *> \param[out] RCONDE
  386. *> \verbatim
  387. *> RCONDE is REAL array, dimension (N)
  388. *> RCONDE holds the computed reciprocal condition numbers
  389. *> for eigenvalues.
  390. *> \endverbatim
  391. *>
  392. *> \param[out] RCNDE1
  393. *> \verbatim
  394. *> RCNDE1 is REAL array, dimension (N)
  395. *> RCNDE1 holds more computed reciprocal condition numbers
  396. *> for eigenvalues.
  397. *> \endverbatim
  398. *>
  399. *> \param[in] RCDEIN
  400. *> \verbatim
  401. *> RCDEIN is REAL array, dimension (N)
  402. *> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal
  403. *> condition numbers for eigenvalues to be compared with
  404. *> RCONDE.
  405. *> \endverbatim
  406. *>
  407. *> \param[out] SCALE
  408. *> \verbatim
  409. *> SCALE is REAL array, dimension (N)
  410. *> Holds information describing balancing of matrix.
  411. *> \endverbatim
  412. *>
  413. *> \param[out] SCALE1
  414. *> \verbatim
  415. *> SCALE1 is REAL array, dimension (N)
  416. *> Holds information describing balancing of matrix.
  417. *> \endverbatim
  418. *>
  419. *> \param[out] RESULT
  420. *> \verbatim
  421. *> RESULT is REAL array, dimension (11)
  422. *> The values computed by the seven tests described above.
  423. *> The values are currently limited to 1/ulp, to avoid
  424. *> overflow.
  425. *> \endverbatim
  426. *>
  427. *> \param[out] WORK
  428. *> \verbatim
  429. *> WORK is COMPLEX array, dimension (NWORK)
  430. *> \endverbatim
  431. *>
  432. *> \param[in] NWORK
  433. *> \verbatim
  434. *> NWORK is INTEGER
  435. *> The number of entries in WORK. This must be at least
  436. *> max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) =
  437. *> max( 360 ,6*NN(j)+2*NN(j)**2) for all j.
  438. *> \endverbatim
  439. *>
  440. *> \param[out] RWORK
  441. *> \verbatim
  442. *> RWORK is REAL array, dimension (2*max(NN,12))
  443. *> \endverbatim
  444. *>
  445. *> \param[out] INFO
  446. *> \verbatim
  447. *> INFO is INTEGER
  448. *> If 0, then successful exit.
  449. *> If <0, then input paramter -INFO is incorrect.
  450. *> If >0, CLATMR, CLATMS, CLATME or CGET23 returned an error
  451. *> code, and INFO is its absolute value.
  452. *>
  453. *>-----------------------------------------------------------------------
  454. *>
  455. *> Some Local Variables and Parameters:
  456. *> ---- ----- --------- --- ----------
  457. *>
  458. *> ZERO, ONE Real 0 and 1.
  459. *> MAXTYP The number of types defined.
  460. *> NMAX Largest value in NN or 12.
  461. *> NERRS The number of tests which have exceeded THRESH
  462. *> COND, CONDS,
  463. *> IMODE Values to be passed to the matrix generators.
  464. *> ANORM Norm of A; passed to matrix generators.
  465. *>
  466. *> OVFL, UNFL Overflow and underflow thresholds.
  467. *> ULP, ULPINV Finest relative precision and its inverse.
  468. *> RTULP, RTULPI Square roots of the previous 4 values.
  469. *>
  470. *> The following four arrays decode JTYPE:
  471. *> KTYPE(j) The general type (1-10) for type "j".
  472. *> KMODE(j) The MODE value to be passed to the matrix
  473. *> generator for type "j".
  474. *> KMAGN(j) The order of magnitude ( O(1),
  475. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  476. *> KCONDS(j) Selectw whether CONDS is to be 1 or
  477. *> 1/sqrt(ulp). (0 means irrelevant.)
  478. *> \endverbatim
  479. *
  480. * Authors:
  481. * ========
  482. *
  483. *> \author Univ. of Tennessee
  484. *> \author Univ. of California Berkeley
  485. *> \author Univ. of Colorado Denver
  486. *> \author NAG Ltd.
  487. *
  488. *> \date November 2011
  489. *
  490. *> \ingroup complex_eig
  491. *
  492. * =====================================================================
  493. SUBROUTINE CDRVVX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  494. $ NIUNIT, NOUNIT, A, LDA, H, W, W1, VL, LDVL, VR,
  495. $ LDVR, LRE, LDLRE, RCONDV, RCNDV1, RCDVIN,
  496. $ RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, RESULT,
  497. $ WORK, NWORK, RWORK, INFO )
  498. *
  499. * -- LAPACK test routine (version 3.4.0) --
  500. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  501. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  502. * November 2011
  503. *
  504. * .. Scalar Arguments ..
  505. INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT,
  506. $ NSIZES, NTYPES, NWORK
  507. REAL THRESH
  508. * ..
  509. * .. Array Arguments ..
  510. LOGICAL DOTYPE( * )
  511. INTEGER ISEED( 4 ), NN( * )
  512. REAL RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
  513. $ RCNDV1( * ), RCONDE( * ), RCONDV( * ),
  514. $ RESULT( 11 ), RWORK( * ), SCALE( * ),
  515. $ SCALE1( * )
  516. COMPLEX A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
  517. $ VL( LDVL, * ), VR( LDVR, * ), W( * ), W1( * ),
  518. $ WORK( * )
  519. * ..
  520. *
  521. * =====================================================================
  522. *
  523. * .. Parameters ..
  524. COMPLEX CZERO
  525. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
  526. COMPLEX CONE
  527. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  528. REAL ZERO, ONE
  529. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  530. INTEGER MAXTYP
  531. PARAMETER ( MAXTYP = 21 )
  532. * ..
  533. * .. Local Scalars ..
  534. LOGICAL BADNN
  535. CHARACTER BALANC
  536. CHARACTER*3 PATH
  537. INTEGER I, IBAL, IINFO, IMODE, ISRT, ITYPE, IWK, J,
  538. $ JCOL, JSIZE, JTYPE, MTYPES, N, NERRS,
  539. $ NFAIL, NMAX, NNWORK, NTEST, NTESTF, NTESTT
  540. REAL ANORM, COND, CONDS, OVFL, RTULP, RTULPI, ULP,
  541. $ ULPINV, UNFL, WI, WR
  542. * ..
  543. * .. Local Arrays ..
  544. CHARACTER BAL( 4 )
  545. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
  546. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  547. $ KTYPE( MAXTYP )
  548. * ..
  549. * .. External Functions ..
  550. REAL SLAMCH
  551. EXTERNAL SLAMCH
  552. * ..
  553. * .. External Subroutines ..
  554. EXTERNAL CGET23, CLATME, CLATMR, CLATMS, CLASET, SLABAD,
  555. $ SLASUM, XERBLA
  556. * ..
  557. * .. Intrinsic Functions ..
  558. INTRINSIC ABS, CMPLX, MAX, MIN, SQRT
  559. * ..
  560. * .. Data statements ..
  561. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
  562. DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
  563. $ 3, 1, 2, 3 /
  564. DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
  565. $ 1, 5, 5, 5, 4, 3, 1 /
  566. DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
  567. DATA BAL / 'N', 'P', 'S', 'B' /
  568. * ..
  569. * .. Executable Statements ..
  570. *
  571. PATH( 1: 1 ) = 'Complex precision'
  572. PATH( 2: 3 ) = 'VX'
  573. *
  574. * Check for errors
  575. *
  576. NTESTT = 0
  577. NTESTF = 0
  578. INFO = 0
  579. *
  580. * Important constants
  581. *
  582. BADNN = .FALSE.
  583. *
  584. * 7 is the largest dimension in the input file of precomputed
  585. * problems
  586. *
  587. NMAX = 7
  588. DO 10 J = 1, NSIZES
  589. NMAX = MAX( NMAX, NN( J ) )
  590. IF( NN( J ).LT.0 )
  591. $ BADNN = .TRUE.
  592. 10 CONTINUE
  593. *
  594. * Check for errors
  595. *
  596. IF( NSIZES.LT.0 ) THEN
  597. INFO = -1
  598. ELSE IF( BADNN ) THEN
  599. INFO = -2
  600. ELSE IF( NTYPES.LT.0 ) THEN
  601. INFO = -3
  602. ELSE IF( THRESH.LT.ZERO ) THEN
  603. INFO = -6
  604. ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
  605. INFO = -10
  606. ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN
  607. INFO = -15
  608. ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN
  609. INFO = -17
  610. ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN
  611. INFO = -19
  612. ELSE IF( 6*NMAX+2*NMAX**2.GT.NWORK ) THEN
  613. INFO = -30
  614. END IF
  615. *
  616. IF( INFO.NE.0 ) THEN
  617. CALL XERBLA( 'CDRVVX', -INFO )
  618. RETURN
  619. END IF
  620. *
  621. * If nothing to do check on NIUNIT
  622. *
  623. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  624. $ GO TO 160
  625. *
  626. * More Important constants
  627. *
  628. UNFL = SLAMCH( 'Safe minimum' )
  629. OVFL = ONE / UNFL
  630. CALL SLABAD( UNFL, OVFL )
  631. ULP = SLAMCH( 'Precision' )
  632. ULPINV = ONE / ULP
  633. RTULP = SQRT( ULP )
  634. RTULPI = ONE / RTULP
  635. *
  636. * Loop over sizes, types
  637. *
  638. NERRS = 0
  639. *
  640. DO 150 JSIZE = 1, NSIZES
  641. N = NN( JSIZE )
  642. IF( NSIZES.NE.1 ) THEN
  643. MTYPES = MIN( MAXTYP, NTYPES )
  644. ELSE
  645. MTYPES = MIN( MAXTYP+1, NTYPES )
  646. END IF
  647. *
  648. DO 140 JTYPE = 1, MTYPES
  649. IF( .NOT.DOTYPE( JTYPE ) )
  650. $ GO TO 140
  651. *
  652. * Save ISEED in case of an error.
  653. *
  654. DO 20 J = 1, 4
  655. IOLDSD( J ) = ISEED( J )
  656. 20 CONTINUE
  657. *
  658. * Compute "A"
  659. *
  660. * Control parameters:
  661. *
  662. * KMAGN KCONDS KMODE KTYPE
  663. * =1 O(1) 1 clustered 1 zero
  664. * =2 large large clustered 2 identity
  665. * =3 small exponential Jordan
  666. * =4 arithmetic diagonal, (w/ eigenvalues)
  667. * =5 random log symmetric, w/ eigenvalues
  668. * =6 random general, w/ eigenvalues
  669. * =7 random diagonal
  670. * =8 random symmetric
  671. * =9 random general
  672. * =10 random triangular
  673. *
  674. IF( MTYPES.GT.MAXTYP )
  675. $ GO TO 90
  676. *
  677. ITYPE = KTYPE( JTYPE )
  678. IMODE = KMODE( JTYPE )
  679. *
  680. * Compute norm
  681. *
  682. GO TO ( 30, 40, 50 )KMAGN( JTYPE )
  683. *
  684. 30 CONTINUE
  685. ANORM = ONE
  686. GO TO 60
  687. *
  688. 40 CONTINUE
  689. ANORM = OVFL*ULP
  690. GO TO 60
  691. *
  692. 50 CONTINUE
  693. ANORM = UNFL*ULPINV
  694. GO TO 60
  695. *
  696. 60 CONTINUE
  697. *
  698. CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  699. IINFO = 0
  700. COND = ULPINV
  701. *
  702. * Special Matrices -- Identity & Jordan block
  703. *
  704. * Zero
  705. *
  706. IF( ITYPE.EQ.1 ) THEN
  707. IINFO = 0
  708. *
  709. ELSE IF( ITYPE.EQ.2 ) THEN
  710. *
  711. * Identity
  712. *
  713. DO 70 JCOL = 1, N
  714. A( JCOL, JCOL ) = ANORM
  715. 70 CONTINUE
  716. *
  717. ELSE IF( ITYPE.EQ.3 ) THEN
  718. *
  719. * Jordan Block
  720. *
  721. DO 80 JCOL = 1, N
  722. A( JCOL, JCOL ) = ANORM
  723. IF( JCOL.GT.1 )
  724. $ A( JCOL, JCOL-1 ) = ONE
  725. 80 CONTINUE
  726. *
  727. ELSE IF( ITYPE.EQ.4 ) THEN
  728. *
  729. * Diagonal Matrix, [Eigen]values Specified
  730. *
  731. CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  732. $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
  733. $ IINFO )
  734. *
  735. ELSE IF( ITYPE.EQ.5 ) THEN
  736. *
  737. * Symmetric, eigenvalues specified
  738. *
  739. CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  740. $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
  741. $ IINFO )
  742. *
  743. ELSE IF( ITYPE.EQ.6 ) THEN
  744. *
  745. * General, eigenvalues specified
  746. *
  747. IF( KCONDS( JTYPE ).EQ.1 ) THEN
  748. CONDS = ONE
  749. ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
  750. CONDS = RTULPI
  751. ELSE
  752. CONDS = ZERO
  753. END IF
  754. *
  755. CALL CLATME( N, 'D', ISEED, WORK, IMODE, COND, CONE,
  756. $ 'T', 'T', 'T', RWORK, 4, CONDS, N, N, ANORM,
  757. $ A, LDA, WORK( 2*N+1 ), IINFO )
  758. *
  759. ELSE IF( ITYPE.EQ.7 ) THEN
  760. *
  761. * Diagonal, random eigenvalues
  762. *
  763. CALL CLATMR( N, N, 'D', ISEED, 'S', WORK, 6, ONE, CONE,
  764. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  765. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  766. $ ZERO, ANORM, 'NO', A, LDA, IDUMMA, IINFO )
  767. *
  768. ELSE IF( ITYPE.EQ.8 ) THEN
  769. *
  770. * Symmetric, random eigenvalues
  771. *
  772. CALL CLATMR( N, N, 'D', ISEED, 'H', WORK, 6, ONE, CONE,
  773. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  774. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  775. $ ZERO, ANORM, 'NO', A, LDA, IDUMMA, IINFO )
  776. *
  777. ELSE IF( ITYPE.EQ.9 ) THEN
  778. *
  779. * General, random eigenvalues
  780. *
  781. CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  782. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  783. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  784. $ ZERO, ANORM, 'NO', A, LDA, IDUMMA, IINFO )
  785. IF( N.GE.4 ) THEN
  786. CALL CLASET( 'Full', 2, N, CZERO, CZERO, A, LDA )
  787. CALL CLASET( 'Full', N-3, 1, CZERO, CZERO, A( 3, 1 ),
  788. $ LDA )
  789. CALL CLASET( 'Full', N-3, 2, CZERO, CZERO,
  790. $ A( 3, N-1 ), LDA )
  791. CALL CLASET( 'Full', 1, N, CZERO, CZERO, A( N, 1 ),
  792. $ LDA )
  793. END IF
  794. *
  795. ELSE IF( ITYPE.EQ.10 ) THEN
  796. *
  797. * Triangular, random eigenvalues
  798. *
  799. CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  800. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  801. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
  802. $ ZERO, ANORM, 'NO', A, LDA, IDUMMA, IINFO )
  803. *
  804. ELSE
  805. *
  806. IINFO = 1
  807. END IF
  808. *
  809. IF( IINFO.NE.0 ) THEN
  810. WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE,
  811. $ IOLDSD
  812. INFO = ABS( IINFO )
  813. RETURN
  814. END IF
  815. *
  816. 90 CONTINUE
  817. *
  818. * Test for minimal and generous workspace
  819. *
  820. DO 130 IWK = 1, 3
  821. IF( IWK.EQ.1 ) THEN
  822. NNWORK = 2*N
  823. ELSE IF( IWK.EQ.2 ) THEN
  824. NNWORK = 2*N + N**2
  825. ELSE
  826. NNWORK = 6*N + 2*N**2
  827. END IF
  828. NNWORK = MAX( NNWORK, 1 )
  829. *
  830. * Test for all balancing options
  831. *
  832. DO 120 IBAL = 1, 4
  833. BALANC = BAL( IBAL )
  834. *
  835. * Perform tests
  836. *
  837. CALL CGET23( .FALSE., 0, BALANC, JTYPE, THRESH,
  838. $ IOLDSD, NOUNIT, N, A, LDA, H, W, W1, VL,
  839. $ LDVL, VR, LDVR, LRE, LDLRE, RCONDV,
  840. $ RCNDV1, RCDVIN, RCONDE, RCNDE1, RCDEIN,
  841. $ SCALE, SCALE1, RESULT, WORK, NNWORK,
  842. $ RWORK, INFO )
  843. *
  844. * Check for RESULT(j) > THRESH
  845. *
  846. NTEST = 0
  847. NFAIL = 0
  848. DO 100 J = 1, 9
  849. IF( RESULT( J ).GE.ZERO )
  850. $ NTEST = NTEST + 1
  851. IF( RESULT( J ).GE.THRESH )
  852. $ NFAIL = NFAIL + 1
  853. 100 CONTINUE
  854. *
  855. IF( NFAIL.GT.0 )
  856. $ NTESTF = NTESTF + 1
  857. IF( NTESTF.EQ.1 ) THEN
  858. WRITE( NOUNIT, FMT = 9999 )PATH
  859. WRITE( NOUNIT, FMT = 9998 )
  860. WRITE( NOUNIT, FMT = 9997 )
  861. WRITE( NOUNIT, FMT = 9996 )
  862. WRITE( NOUNIT, FMT = 9995 )THRESH
  863. NTESTF = 2
  864. END IF
  865. *
  866. DO 110 J = 1, 9
  867. IF( RESULT( J ).GE.THRESH ) THEN
  868. WRITE( NOUNIT, FMT = 9994 )BALANC, N, IWK,
  869. $ IOLDSD, JTYPE, J, RESULT( J )
  870. END IF
  871. 110 CONTINUE
  872. *
  873. NERRS = NERRS + NFAIL
  874. NTESTT = NTESTT + NTEST
  875. *
  876. 120 CONTINUE
  877. 130 CONTINUE
  878. 140 CONTINUE
  879. 150 CONTINUE
  880. *
  881. 160 CONTINUE
  882. *
  883. * Read in data from file to check accuracy of condition estimation.
  884. * Assume input eigenvalues are sorted lexicographically (increasing
  885. * by real part, then decreasing by imaginary part)
  886. *
  887. JTYPE = 0
  888. 170 CONTINUE
  889. READ( NIUNIT, FMT = *, END = 220 )N, ISRT
  890. *
  891. * Read input data until N=0
  892. *
  893. IF( N.EQ.0 )
  894. $ GO TO 220
  895. JTYPE = JTYPE + 1
  896. ISEED( 1 ) = JTYPE
  897. DO 180 I = 1, N
  898. READ( NIUNIT, FMT = * )( A( I, J ), J = 1, N )
  899. 180 CONTINUE
  900. DO 190 I = 1, N
  901. READ( NIUNIT, FMT = * )WR, WI, RCDEIN( I ), RCDVIN( I )
  902. W1( I ) = CMPLX( WR, WI )
  903. 190 CONTINUE
  904. CALL CGET23( .TRUE., ISRT, 'N', 22, THRESH, ISEED, NOUNIT, N, A,
  905. $ LDA, H, W, W1, VL, LDVL, VR, LDVR, LRE, LDLRE,
  906. $ RCONDV, RCNDV1, RCDVIN, RCONDE, RCNDE1, RCDEIN,
  907. $ SCALE, SCALE1, RESULT, WORK, 6*N+2*N**2, RWORK,
  908. $ INFO )
  909. *
  910. * Check for RESULT(j) > THRESH
  911. *
  912. NTEST = 0
  913. NFAIL = 0
  914. DO 200 J = 1, 11
  915. IF( RESULT( J ).GE.ZERO )
  916. $ NTEST = NTEST + 1
  917. IF( RESULT( J ).GE.THRESH )
  918. $ NFAIL = NFAIL + 1
  919. 200 CONTINUE
  920. *
  921. IF( NFAIL.GT.0 )
  922. $ NTESTF = NTESTF + 1
  923. IF( NTESTF.EQ.1 ) THEN
  924. WRITE( NOUNIT, FMT = 9999 )PATH
  925. WRITE( NOUNIT, FMT = 9998 )
  926. WRITE( NOUNIT, FMT = 9997 )
  927. WRITE( NOUNIT, FMT = 9996 )
  928. WRITE( NOUNIT, FMT = 9995 )THRESH
  929. NTESTF = 2
  930. END IF
  931. *
  932. DO 210 J = 1, 11
  933. IF( RESULT( J ).GE.THRESH ) THEN
  934. WRITE( NOUNIT, FMT = 9993 )N, JTYPE, J, RESULT( J )
  935. END IF
  936. 210 CONTINUE
  937. *
  938. NERRS = NERRS + NFAIL
  939. NTESTT = NTESTT + NTEST
  940. GO TO 170
  941. 220 CONTINUE
  942. *
  943. * Summary
  944. *
  945. CALL SLASUM( PATH, NOUNIT, NERRS, NTESTT )
  946. *
  947. 9999 FORMAT( / 1X, A3, ' -- Complex Eigenvalue-Eigenvector ',
  948. $ 'Decomposition Expert Driver',
  949. $ / ' Matrix types (see CDRVVX for details): ' )
  950. *
  951. 9998 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ',
  952. $ ' ', ' 5=Diagonal: geometr. spaced entries.',
  953. $ / ' 2=Identity matrix. ', ' 6=Diagona',
  954. $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ',
  955. $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ',
  956. $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s',
  957. $ 'mall, evenly spaced.' )
  958. 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev',
  959. $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
  960. $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
  961. $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
  962. $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
  963. $ 'lex ', / ' 12=Well-cond., random complex ', ' ',
  964. $ ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
  965. $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.',
  966. $ ' complx ' )
  967. 9996 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ',
  968. $ 'with small random entries.', / ' 20=Matrix with large ran',
  969. $ 'dom entries. ', ' 22=Matrix read from input file', / )
  970. 9995 FORMAT( ' Tests performed with test threshold =', F8.2,
  971. $ / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
  972. $ / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ',
  973. $ / ' 3 = | |VR(i)| - 1 | / ulp ',
  974. $ / ' 4 = | |VL(i)| - 1 | / ulp ',
  975. $ / ' 5 = 0 if W same no matter if VR or VL computed,',
  976. $ ' 1/ulp otherwise', /
  977. $ ' 6 = 0 if VR same no matter what else computed,',
  978. $ ' 1/ulp otherwise', /
  979. $ ' 7 = 0 if VL same no matter what else computed,',
  980. $ ' 1/ulp otherwise', /
  981. $ ' 8 = 0 if RCONDV same no matter what else computed,',
  982. $ ' 1/ulp otherwise', /
  983. $ ' 9 = 0 if SCALE, ILO, IHI, ABNRM same no matter what else',
  984. $ ' computed, 1/ulp otherwise',
  985. $ / ' 10 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),',
  986. $ / ' 11 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),' )
  987. 9994 FORMAT( ' BALANC=''', A1, ''',N=', I4, ',IWK=', I1, ', seed=',
  988. $ 4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 )
  989. 9993 FORMAT( ' N=', I5, ', input example =', I3, ', test(', I2, ')=',
  990. $ G10.3 )
  991. 9992 FORMAT( ' CDRVVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  992. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  993. *
  994. RETURN
  995. *
  996. * End of CDRVVX
  997. *
  998. END