You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slagge.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. *> \brief \b SLAGGE
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INFO, KL, KU, LDA, M, N
  15. * ..
  16. * .. Array Arguments ..
  17. * INTEGER ISEED( 4 )
  18. * REAL A( LDA, * ), D( * ), WORK( * )
  19. * ..
  20. *
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> SLAGGE generates a real general m by n matrix A, by pre- and post-
  28. *> multiplying a real diagonal matrix D with random orthogonal matrices:
  29. *> A = U*D*V. The lower and upper bandwidths may then be reduced to
  30. *> kl and ku by additional orthogonal transformations.
  31. *> \endverbatim
  32. *
  33. * Arguments:
  34. * ==========
  35. *
  36. *> \param[in] M
  37. *> \verbatim
  38. *> M is INTEGER
  39. *> The number of rows of the matrix A. M >= 0.
  40. *> \endverbatim
  41. *>
  42. *> \param[in] N
  43. *> \verbatim
  44. *> N is INTEGER
  45. *> The number of columns of the matrix A. N >= 0.
  46. *> \endverbatim
  47. *>
  48. *> \param[in] KL
  49. *> \verbatim
  50. *> KL is INTEGER
  51. *> The number of nonzero subdiagonals within the band of A.
  52. *> 0 <= KL <= M-1.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] KU
  56. *> \verbatim
  57. *> KU is INTEGER
  58. *> The number of nonzero superdiagonals within the band of A.
  59. *> 0 <= KU <= N-1.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] D
  63. *> \verbatim
  64. *> D is REAL array, dimension (min(M,N))
  65. *> The diagonal elements of the diagonal matrix D.
  66. *> \endverbatim
  67. *>
  68. *> \param[out] A
  69. *> \verbatim
  70. *> A is REAL array, dimension (LDA,N)
  71. *> The generated m by n matrix A.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LDA
  75. *> \verbatim
  76. *> LDA is INTEGER
  77. *> The leading dimension of the array A. LDA >= M.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] ISEED
  81. *> \verbatim
  82. *> ISEED is INTEGER array, dimension (4)
  83. *> On entry, the seed of the random number generator; the array
  84. *> elements must be between 0 and 4095, and ISEED(4) must be
  85. *> odd.
  86. *> On exit, the seed is updated.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] WORK
  90. *> \verbatim
  91. *> WORK is REAL array, dimension (M+N)
  92. *> \endverbatim
  93. *>
  94. *> \param[out] INFO
  95. *> \verbatim
  96. *> INFO is INTEGER
  97. *> = 0: successful exit
  98. *> < 0: if INFO = -i, the i-th argument had an illegal value
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \date November 2011
  110. *
  111. *> \ingroup real_matgen
  112. *
  113. * =====================================================================
  114. SUBROUTINE SLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
  115. *
  116. * -- LAPACK auxiliary routine (version 3.4.0) --
  117. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  118. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  119. * November 2011
  120. *
  121. * .. Scalar Arguments ..
  122. INTEGER INFO, KL, KU, LDA, M, N
  123. * ..
  124. * .. Array Arguments ..
  125. INTEGER ISEED( 4 )
  126. REAL A( LDA, * ), D( * ), WORK( * )
  127. * ..
  128. *
  129. * =====================================================================
  130. *
  131. * .. Parameters ..
  132. REAL ZERO, ONE
  133. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  134. * ..
  135. * .. Local Scalars ..
  136. INTEGER I, J
  137. REAL TAU, WA, WB, WN
  138. * ..
  139. * .. External Subroutines ..
  140. EXTERNAL SGEMV, SGER, SLARNV, SSCAL, XERBLA
  141. * ..
  142. * .. Intrinsic Functions ..
  143. INTRINSIC MAX, MIN, SIGN
  144. * ..
  145. * .. External Functions ..
  146. REAL SNRM2
  147. EXTERNAL SNRM2
  148. * ..
  149. * .. Executable Statements ..
  150. *
  151. * Test the input arguments
  152. *
  153. INFO = 0
  154. IF( M.LT.0 ) THEN
  155. INFO = -1
  156. ELSE IF( N.LT.0 ) THEN
  157. INFO = -2
  158. ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
  159. INFO = -3
  160. ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  161. INFO = -4
  162. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  163. INFO = -7
  164. END IF
  165. IF( INFO.LT.0 ) THEN
  166. CALL XERBLA( 'SLAGGE', -INFO )
  167. RETURN
  168. END IF
  169. *
  170. * initialize A to diagonal matrix
  171. *
  172. DO 20 J = 1, N
  173. DO 10 I = 1, M
  174. A( I, J ) = ZERO
  175. 10 CONTINUE
  176. 20 CONTINUE
  177. DO 30 I = 1, MIN( M, N )
  178. A( I, I ) = D( I )
  179. 30 CONTINUE
  180. *
  181. * pre- and post-multiply A by random orthogonal matrices
  182. *
  183. DO 40 I = MIN( M, N ), 1, -1
  184. IF( I.LT.M ) THEN
  185. *
  186. * generate random reflection
  187. *
  188. CALL SLARNV( 3, ISEED, M-I+1, WORK )
  189. WN = SNRM2( M-I+1, WORK, 1 )
  190. WA = SIGN( WN, WORK( 1 ) )
  191. IF( WN.EQ.ZERO ) THEN
  192. TAU = ZERO
  193. ELSE
  194. WB = WORK( 1 ) + WA
  195. CALL SSCAL( M-I, ONE / WB, WORK( 2 ), 1 )
  196. WORK( 1 ) = ONE
  197. TAU = WB / WA
  198. END IF
  199. *
  200. * multiply A(i:m,i:n) by random reflection from the left
  201. *
  202. CALL SGEMV( 'Transpose', M-I+1, N-I+1, ONE, A( I, I ), LDA,
  203. $ WORK, 1, ZERO, WORK( M+1 ), 1 )
  204. CALL SGER( M-I+1, N-I+1, -TAU, WORK, 1, WORK( M+1 ), 1,
  205. $ A( I, I ), LDA )
  206. END IF
  207. IF( I.LT.N ) THEN
  208. *
  209. * generate random reflection
  210. *
  211. CALL SLARNV( 3, ISEED, N-I+1, WORK )
  212. WN = SNRM2( N-I+1, WORK, 1 )
  213. WA = SIGN( WN, WORK( 1 ) )
  214. IF( WN.EQ.ZERO ) THEN
  215. TAU = ZERO
  216. ELSE
  217. WB = WORK( 1 ) + WA
  218. CALL SSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
  219. WORK( 1 ) = ONE
  220. TAU = WB / WA
  221. END IF
  222. *
  223. * multiply A(i:m,i:n) by random reflection from the right
  224. *
  225. CALL SGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ),
  226. $ LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
  227. CALL SGER( M-I+1, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1,
  228. $ A( I, I ), LDA )
  229. END IF
  230. 40 CONTINUE
  231. *
  232. * Reduce number of subdiagonals to KL and number of superdiagonals
  233. * to KU
  234. *
  235. DO 70 I = 1, MAX( M-1-KL, N-1-KU )
  236. IF( KL.LE.KU ) THEN
  237. *
  238. * annihilate subdiagonal elements first (necessary if KL = 0)
  239. *
  240. IF( I.LE.MIN( M-1-KL, N ) ) THEN
  241. *
  242. * generate reflection to annihilate A(kl+i+1:m,i)
  243. *
  244. WN = SNRM2( M-KL-I+1, A( KL+I, I ), 1 )
  245. WA = SIGN( WN, A( KL+I, I ) )
  246. IF( WN.EQ.ZERO ) THEN
  247. TAU = ZERO
  248. ELSE
  249. WB = A( KL+I, I ) + WA
  250. CALL SSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
  251. A( KL+I, I ) = ONE
  252. TAU = WB / WA
  253. END IF
  254. *
  255. * apply reflection to A(kl+i:m,i+1:n) from the left
  256. *
  257. CALL SGEMV( 'Transpose', M-KL-I+1, N-I, ONE,
  258. $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
  259. $ WORK, 1 )
  260. CALL SGER( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK, 1,
  261. $ A( KL+I, I+1 ), LDA )
  262. A( KL+I, I ) = -WA
  263. END IF
  264. *
  265. IF( I.LE.MIN( N-1-KU, M ) ) THEN
  266. *
  267. * generate reflection to annihilate A(i,ku+i+1:n)
  268. *
  269. WN = SNRM2( N-KU-I+1, A( I, KU+I ), LDA )
  270. WA = SIGN( WN, A( I, KU+I ) )
  271. IF( WN.EQ.ZERO ) THEN
  272. TAU = ZERO
  273. ELSE
  274. WB = A( I, KU+I ) + WA
  275. CALL SSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
  276. A( I, KU+I ) = ONE
  277. TAU = WB / WA
  278. END IF
  279. *
  280. * apply reflection to A(i+1:m,ku+i:n) from the right
  281. *
  282. CALL SGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
  283. $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
  284. $ WORK, 1 )
  285. CALL SGER( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
  286. $ LDA, A( I+1, KU+I ), LDA )
  287. A( I, KU+I ) = -WA
  288. END IF
  289. ELSE
  290. *
  291. * annihilate superdiagonal elements first (necessary if
  292. * KU = 0)
  293. *
  294. IF( I.LE.MIN( N-1-KU, M ) ) THEN
  295. *
  296. * generate reflection to annihilate A(i,ku+i+1:n)
  297. *
  298. WN = SNRM2( N-KU-I+1, A( I, KU+I ), LDA )
  299. WA = SIGN( WN, A( I, KU+I ) )
  300. IF( WN.EQ.ZERO ) THEN
  301. TAU = ZERO
  302. ELSE
  303. WB = A( I, KU+I ) + WA
  304. CALL SSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
  305. A( I, KU+I ) = ONE
  306. TAU = WB / WA
  307. END IF
  308. *
  309. * apply reflection to A(i+1:m,ku+i:n) from the right
  310. *
  311. CALL SGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
  312. $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
  313. $ WORK, 1 )
  314. CALL SGER( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
  315. $ LDA, A( I+1, KU+I ), LDA )
  316. A( I, KU+I ) = -WA
  317. END IF
  318. *
  319. IF( I.LE.MIN( M-1-KL, N ) ) THEN
  320. *
  321. * generate reflection to annihilate A(kl+i+1:m,i)
  322. *
  323. WN = SNRM2( M-KL-I+1, A( KL+I, I ), 1 )
  324. WA = SIGN( WN, A( KL+I, I ) )
  325. IF( WN.EQ.ZERO ) THEN
  326. TAU = ZERO
  327. ELSE
  328. WB = A( KL+I, I ) + WA
  329. CALL SSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
  330. A( KL+I, I ) = ONE
  331. TAU = WB / WA
  332. END IF
  333. *
  334. * apply reflection to A(kl+i:m,i+1:n) from the left
  335. *
  336. CALL SGEMV( 'Transpose', M-KL-I+1, N-I, ONE,
  337. $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
  338. $ WORK, 1 )
  339. CALL SGER( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK, 1,
  340. $ A( KL+I, I+1 ), LDA )
  341. A( KL+I, I ) = -WA
  342. END IF
  343. END IF
  344. *
  345. DO 50 J = KL + I + 1, M
  346. A( J, I ) = ZERO
  347. 50 CONTINUE
  348. *
  349. DO 60 J = KU + I + 1, N
  350. A( I, J ) = ZERO
  351. 60 CONTINUE
  352. 70 CONTINUE
  353. RETURN
  354. *
  355. * End of SLAGGE
  356. *
  357. END