You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorcsd2by1.f 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711
  1. *> \brief \b SORCSD2BY1
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SORCSD2BY1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorcsd2by1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorcsd2by1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorcsd2by1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  22. * X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  23. * LDV1T, WORK, LWORK, IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBU1, JOBU2, JOBV1T
  27. * INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  28. * $ M, P, Q
  29. * ..
  30. * .. Array Arguments ..
  31. * REAL THETA(*)
  32. * REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  33. * $ X11(LDX11,*), X21(LDX21,*)
  34. * INTEGER IWORK(*)
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. *> =============
  40. *>
  41. *>\verbatim
  42. *>
  43. *> SORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
  44. *> orthonormal columns that has been partitioned into a 2-by-1 block
  45. *> structure:
  46. *>
  47. *> [ I 0 0 ]
  48. *> [ 0 C 0 ]
  49. *> [ X11 ] [ U1 | ] [ 0 0 0 ]
  50. *> X = [-----] = [---------] [----------] V1**T .
  51. *> [ X21 ] [ | U2 ] [ 0 0 0 ]
  52. *> [ 0 S 0 ]
  53. *> [ 0 0 I ]
  54. *>
  55. *> X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P,
  56. *> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
  57. *> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
  58. *> which R = MIN(P,M-P,Q,M-Q).
  59. *>
  60. *>\endverbatim
  61. *
  62. * Arguments:
  63. * ==========
  64. *
  65. *> \param[in] JOBU1
  66. *> \verbatim
  67. *> JOBU1 is CHARACTER
  68. *> = 'Y': U1 is computed;
  69. *> otherwise: U1 is not computed.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] JOBU2
  73. *> \verbatim
  74. *> JOBU2 is CHARACTER
  75. *> = 'Y': U2 is computed;
  76. *> otherwise: U2 is not computed.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] JOBV1T
  80. *> \verbatim
  81. *> JOBV1T is CHARACTER
  82. *> = 'Y': V1T is computed;
  83. *> otherwise: V1T is not computed.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] M
  87. *> \verbatim
  88. *> M is INTEGER
  89. *> The number of rows and columns in X.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] P
  93. *> \verbatim
  94. *> P is INTEGER
  95. *> The number of rows in X11 and X12. 0 <= P <= M.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] Q
  99. *> \verbatim
  100. *> Q is INTEGER
  101. *> The number of columns in X11 and X21. 0 <= Q <= M.
  102. *> \endverbatim
  103. *>
  104. *> \param[in,out] X11
  105. *> \verbatim
  106. *> X11 is REAL array, dimension (LDX11,Q)
  107. *> On entry, part of the orthogonal matrix whose CSD is
  108. *> desired.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDX11
  112. *> \verbatim
  113. *> LDX11 is INTEGER
  114. *> The leading dimension of X11. LDX11 >= MAX(1,P).
  115. *> \endverbatim
  116. *>
  117. *> \param[in,out] X21
  118. *> \verbatim
  119. *> X21 is REAL array, dimension (LDX21,Q)
  120. *> On entry, part of the orthogonal matrix whose CSD is
  121. *> desired.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDX21
  125. *> \verbatim
  126. *> LDX21 is INTEGER
  127. *> The leading dimension of X21. LDX21 >= MAX(1,M-P).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] THETA
  131. *> \verbatim
  132. *> THETA is REAL array, dimension (R), in which R =
  133. *> MIN(P,M-P,Q,M-Q).
  134. *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  135. *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  136. *> \endverbatim
  137. *>
  138. *> \param[out] U1
  139. *> \verbatim
  140. *> U1 is REAL array, dimension (P)
  141. *> If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] LDU1
  145. *> \verbatim
  146. *> LDU1 is INTEGER
  147. *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  148. *> MAX(1,P).
  149. *> \endverbatim
  150. *>
  151. *> \param[out] U2
  152. *> \verbatim
  153. *> U2 is REAL array, dimension (M-P)
  154. *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
  155. *> matrix U2.
  156. *> \endverbatim
  157. *>
  158. *> \param[in] LDU2
  159. *> \verbatim
  160. *> LDU2 is INTEGER
  161. *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  162. *> MAX(1,M-P).
  163. *> \endverbatim
  164. *>
  165. *> \param[out] V1T
  166. *> \verbatim
  167. *> V1T is REAL array, dimension (Q)
  168. *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
  169. *> matrix V1**T.
  170. *> \endverbatim
  171. *>
  172. *> \param[in] LDV1T
  173. *> \verbatim
  174. *> LDV1T is INTEGER
  175. *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  176. *> MAX(1,Q).
  177. *> \endverbatim
  178. *>
  179. *> \param[out] WORK
  180. *> \verbatim
  181. *> WORK is REAL array, dimension (MAX(1,LWORK))
  182. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  183. *> If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
  184. *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  185. *> define the matrix in intermediate bidiagonal-block form
  186. *> remaining after nonconvergence. INFO specifies the number
  187. *> of nonzero PHI's.
  188. *> \endverbatim
  189. *>
  190. *> \param[in] LWORK
  191. *> \verbatim
  192. *> LWORK is INTEGER
  193. *> The dimension of the array WORK.
  194. *> \endverbatim
  195. *>
  196. *> If LWORK = -1, then a workspace query is assumed; the routine
  197. *> only calculates the optimal size of the WORK array, returns
  198. *> this value as the first entry of the work array, and no error
  199. *> message related to LWORK is issued by XERBLA.
  200. *> \param[out] IWORK
  201. *> \verbatim
  202. *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  203. *> \endverbatim
  204. *>
  205. *> \param[out] INFO
  206. *> \verbatim
  207. *> INFO is INTEGER
  208. *> = 0: successful exit.
  209. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  210. *> > 0: SBBCSD did not converge. See the description of WORK
  211. *> above for details.
  212. *> \endverbatim
  213. *>
  214. *> \par Reference:
  215. * ===============
  216. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  217. *> Algorithms, 50(1):33-65, 2009.
  218. *
  219. * Authors:
  220. * ========
  221. *
  222. *> \author Univ. of Tennessee
  223. *> \author Univ. of California Berkeley
  224. *> \author Univ. of Colorado Denver
  225. *> \author NAG Ltd.
  226. *
  227. *> \date July 2012
  228. *
  229. *> \ingroup realOTHERcomputational
  230. *
  231. * =====================================================================
  232. SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  233. $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  234. $ LDV1T, WORK, LWORK, IWORK, INFO )
  235. *
  236. * -- LAPACK computational routine (version 3.5.0) --
  237. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  238. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  239. * July 2012
  240. *
  241. * .. Scalar Arguments ..
  242. CHARACTER JOBU1, JOBU2, JOBV1T
  243. INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  244. $ M, P, Q
  245. * ..
  246. * .. Array Arguments ..
  247. REAL THETA(*)
  248. REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  249. $ X11(LDX11,*), X21(LDX21,*)
  250. INTEGER IWORK(*)
  251. * ..
  252. *
  253. * =====================================================================
  254. *
  255. * .. Parameters ..
  256. REAL ONE, ZERO
  257. PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
  258. * ..
  259. * .. Local Scalars ..
  260. INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  261. $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  262. $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  263. $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  264. $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  265. $ LWORKMIN, LWORKOPT, R
  266. LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
  267. * ..
  268. * .. External Subroutines ..
  269. EXTERNAL SBBCSD, SCOPY, SLACPY, SLAPMR, SLAPMT, SORBDB1,
  270. $ SORBDB2, SORBDB3, SORBDB4, SORGLQ, SORGQR,
  271. $ XERBLA
  272. * ..
  273. * .. External Functions ..
  274. LOGICAL LSAME
  275. EXTERNAL LSAME
  276. * ..
  277. * .. Intrinsic Function ..
  278. INTRINSIC INT, MAX, MIN
  279. * ..
  280. * .. Executable Statements ..
  281. *
  282. * Test input arguments
  283. *
  284. INFO = 0
  285. WANTU1 = LSAME( JOBU1, 'Y' )
  286. WANTU2 = LSAME( JOBU2, 'Y' )
  287. WANTV1T = LSAME( JOBV1T, 'Y' )
  288. LQUERY = LWORK .EQ. -1
  289. *
  290. IF( M .LT. 0 ) THEN
  291. INFO = -4
  292. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  293. INFO = -5
  294. ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  295. INFO = -6
  296. ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  297. INFO = -8
  298. ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  299. INFO = -10
  300. ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  301. INFO = -13
  302. ELSE IF( WANTU2 .AND. LDU2 .LT. M - P ) THEN
  303. INFO = -15
  304. ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  305. INFO = -17
  306. END IF
  307. *
  308. R = MIN( P, M-P, Q, M-Q )
  309. *
  310. * Compute workspace
  311. *
  312. * WORK layout:
  313. * |-------------------------------------------------------|
  314. * | LWORKOPT (1) |
  315. * |-------------------------------------------------------|
  316. * | PHI (MAX(1,R-1)) |
  317. * |-------------------------------------------------------|
  318. * | TAUP1 (MAX(1,P)) | B11D (R) |
  319. * | TAUP2 (MAX(1,M-P)) | B11E (R-1) |
  320. * | TAUQ1 (MAX(1,Q)) | B12D (R) |
  321. * |-----------------------------------------| B12E (R-1) |
  322. * | SORBDB WORK | SORGQR WORK | SORGLQ WORK | B21D (R) |
  323. * | | | | B21E (R-1) |
  324. * | | | | B22D (R) |
  325. * | | | | B22E (R-1) |
  326. * | | | | SBBCSD WORK |
  327. * |-------------------------------------------------------|
  328. *
  329. IF( INFO .EQ. 0 ) THEN
  330. IPHI = 2
  331. IB11D = IPHI + MAX( 1, R-1 )
  332. IB11E = IB11D + MAX( 1, R )
  333. IB12D = IB11E + MAX( 1, R - 1 )
  334. IB12E = IB12D + MAX( 1, R )
  335. IB21D = IB12E + MAX( 1, R - 1 )
  336. IB21E = IB21D + MAX( 1, R )
  337. IB22D = IB21E + MAX( 1, R - 1 )
  338. IB22E = IB22D + MAX( 1, R )
  339. IBBCSD = IB22E + MAX( 1, R - 1 )
  340. ITAUP1 = IPHI + MAX( 1, R-1 )
  341. ITAUP2 = ITAUP1 + MAX( 1, P )
  342. ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  343. IORBDB = ITAUQ1 + MAX( 1, Q )
  344. IORGQR = ITAUQ1 + MAX( 1, Q )
  345. IORGLQ = ITAUQ1 + MAX( 1, Q )
  346. IF( R .EQ. Q ) THEN
  347. CALL SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  348. $ 0, 0, WORK, -1, CHILDINFO )
  349. LORBDB = INT( WORK(1) )
  350. IF( P .GE. M-P ) THEN
  351. CALL SORGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  352. $ CHILDINFO )
  353. LORGQRMIN = MAX( 1, P )
  354. LORGQROPT = INT( WORK(1) )
  355. ELSE
  356. CALL SORGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  357. $ CHILDINFO )
  358. LORGQRMIN = MAX( 1, M-P )
  359. LORGQROPT = INT( WORK(1) )
  360. END IF
  361. CALL SORGLQ( MAX(0,Q-1), MAX(0,Q-1), MAX(0,Q-1), V1T, LDV1T,
  362. $ 0, WORK(1), -1, CHILDINFO )
  363. LORGLQMIN = MAX( 1, Q-1 )
  364. LORGLQOPT = INT( WORK(1) )
  365. CALL SBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  366. $ 0, U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1, 0, 0,
  367. $ 0, 0, 0, 0, 0, 0, WORK(1), -1, CHILDINFO )
  368. LBBCSD = INT( WORK(1) )
  369. ELSE IF( R .EQ. P ) THEN
  370. CALL SORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  371. $ 0, 0, WORK(1), -1, CHILDINFO )
  372. LORBDB = INT( WORK(1) )
  373. IF( P-1 .GE. M-P ) THEN
  374. CALL SORGQR( P-1, P-1, P-1, U1(2,2), LDU1, 0, WORK(1),
  375. $ -1, CHILDINFO )
  376. LORGQRMIN = MAX( 1, P-1 )
  377. LORGQROPT = INT( WORK(1) )
  378. ELSE
  379. CALL SORGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  380. $ CHILDINFO )
  381. LORGQRMIN = MAX( 1, M-P )
  382. LORGQROPT = INT( WORK(1) )
  383. END IF
  384. CALL SORGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  385. $ CHILDINFO )
  386. LORGLQMIN = MAX( 1, Q )
  387. LORGLQOPT = INT( WORK(1) )
  388. CALL SBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  389. $ 0, V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2, 0, 0,
  390. $ 0, 0, 0, 0, 0, 0, WORK(1), -1, CHILDINFO )
  391. LBBCSD = INT( WORK(1) )
  392. ELSE IF( R .EQ. M-P ) THEN
  393. CALL SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  394. $ 0, 0, WORK(1), -1, CHILDINFO )
  395. LORBDB = INT( WORK(1) )
  396. IF( P .GE. M-P-1 ) THEN
  397. CALL SORGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  398. $ CHILDINFO )
  399. LORGQRMIN = MAX( 1, P )
  400. LORGQROPT = INT( WORK(1) )
  401. ELSE
  402. CALL SORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, 0,
  403. $ WORK(1), -1, CHILDINFO )
  404. LORGQRMIN = MAX( 1, M-P-1 )
  405. LORGQROPT = INT( WORK(1) )
  406. END IF
  407. CALL SORGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  408. $ CHILDINFO )
  409. LORGLQMIN = MAX( 1, Q )
  410. LORGLQOPT = INT( WORK(1) )
  411. CALL SBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  412. $ THETA, 0, 0, 1, V1T, LDV1T, U2, LDU2, U1, LDU1,
  413. $ 0, 0, 0, 0, 0, 0, 0, 0, WORK(1), -1,
  414. $ CHILDINFO )
  415. LBBCSD = INT( WORK(1) )
  416. ELSE
  417. CALL SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  418. $ 0, 0, 0, WORK(1), -1, CHILDINFO )
  419. LORBDB = M + INT( WORK(1) )
  420. IF( P .GE. M-P ) THEN
  421. CALL SORGQR( P, P, M-Q, U1, LDU1, 0, WORK(1), -1,
  422. $ CHILDINFO )
  423. LORGQRMIN = MAX( 1, P )
  424. LORGQROPT = INT( WORK(1) )
  425. ELSE
  426. CALL SORGQR( M-P, M-P, M-Q, U2, LDU2, 0, WORK(1), -1,
  427. $ CHILDINFO )
  428. LORGQRMIN = MAX( 1, M-P )
  429. LORGQROPT = INT( WORK(1) )
  430. END IF
  431. CALL SORGLQ( Q, Q, Q, V1T, LDV1T, 0, WORK(1), -1,
  432. $ CHILDINFO )
  433. LORGLQMIN = MAX( 1, Q )
  434. LORGLQOPT = INT( WORK(1) )
  435. CALL SBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  436. $ THETA, 0, U2, LDU2, U1, LDU1, 0, 1, V1T, LDV1T,
  437. $ 0, 0, 0, 0, 0, 0, 0, 0, WORK(1), -1,
  438. $ CHILDINFO )
  439. LBBCSD = INT( WORK(1) )
  440. END IF
  441. LWORKMIN = MAX( IORBDB+LORBDB-1,
  442. $ IORGQR+LORGQRMIN-1,
  443. $ IORGLQ+LORGLQMIN-1,
  444. $ IBBCSD+LBBCSD-1 )
  445. LWORKOPT = MAX( IORBDB+LORBDB-1,
  446. $ IORGQR+LORGQROPT-1,
  447. $ IORGLQ+LORGLQOPT-1,
  448. $ IBBCSD+LBBCSD-1 )
  449. WORK(1) = LWORKOPT
  450. IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  451. INFO = -19
  452. END IF
  453. END IF
  454. IF( INFO .NE. 0 ) THEN
  455. CALL XERBLA( 'SORCSD2BY1', -INFO )
  456. RETURN
  457. ELSE IF( LQUERY ) THEN
  458. RETURN
  459. END IF
  460. LORGQR = LWORK-IORGQR+1
  461. LORGLQ = LWORK-IORGLQ+1
  462. *
  463. * Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  464. * in which R = MIN(P,M-P,Q,M-Q)
  465. *
  466. IF( R .EQ. Q ) THEN
  467. *
  468. * Case 1: R = Q
  469. *
  470. * Simultaneously bidiagonalize X11 and X21
  471. *
  472. CALL SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  473. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  474. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  475. *
  476. * Accumulate Householder reflectors
  477. *
  478. IF( WANTU1 .AND. P .GT. 0 ) THEN
  479. CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  480. CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  481. $ LORGQR, CHILDINFO )
  482. END IF
  483. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  484. CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  485. CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  486. $ WORK(IORGQR), LORGQR, CHILDINFO )
  487. END IF
  488. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  489. V1T(1,1) = ONE
  490. DO J = 2, Q
  491. V1T(1,J) = ZERO
  492. V1T(J,1) = ZERO
  493. END DO
  494. CALL SLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  495. $ LDV1T )
  496. CALL SORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  497. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  498. END IF
  499. *
  500. * Simultaneously diagonalize X11 and X21.
  501. *
  502. CALL SBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  503. $ WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1,
  504. $ WORK(IB11D), WORK(IB11E), WORK(IB12D),
  505. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  506. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  507. $ CHILDINFO )
  508. *
  509. * Permute rows and columns to place zero submatrices in
  510. * preferred positions
  511. *
  512. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  513. DO I = 1, Q
  514. IWORK(I) = M - P - Q + I
  515. END DO
  516. DO I = Q + 1, M - P
  517. IWORK(I) = I - Q
  518. END DO
  519. CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  520. END IF
  521. ELSE IF( R .EQ. P ) THEN
  522. *
  523. * Case 2: R = P
  524. *
  525. * Simultaneously bidiagonalize X11 and X21
  526. *
  527. CALL SORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  528. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  529. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  530. *
  531. * Accumulate Householder reflectors
  532. *
  533. IF( WANTU1 .AND. P .GT. 0 ) THEN
  534. U1(1,1) = ONE
  535. DO J = 2, P
  536. U1(1,J) = ZERO
  537. U1(J,1) = ZERO
  538. END DO
  539. CALL SLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  540. CALL SORGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  541. $ WORK(IORGQR), LORGQR, CHILDINFO )
  542. END IF
  543. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  544. CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  545. CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  546. $ WORK(IORGQR), LORGQR, CHILDINFO )
  547. END IF
  548. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  549. CALL SLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  550. CALL SORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  551. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  552. END IF
  553. *
  554. * Simultaneously diagonalize X11 and X21.
  555. *
  556. CALL SBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  557. $ WORK(IPHI), V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2,
  558. $ WORK(IB11D), WORK(IB11E), WORK(IB12D),
  559. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  560. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  561. $ CHILDINFO )
  562. *
  563. * Permute rows and columns to place identity submatrices in
  564. * preferred positions
  565. *
  566. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  567. DO I = 1, Q
  568. IWORK(I) = M - P - Q + I
  569. END DO
  570. DO I = Q + 1, M - P
  571. IWORK(I) = I - Q
  572. END DO
  573. CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  574. END IF
  575. ELSE IF( R .EQ. M-P ) THEN
  576. *
  577. * Case 3: R = M-P
  578. *
  579. * Simultaneously bidiagonalize X11 and X21
  580. *
  581. CALL SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  582. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  583. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  584. *
  585. * Accumulate Householder reflectors
  586. *
  587. IF( WANTU1 .AND. P .GT. 0 ) THEN
  588. CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  589. CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  590. $ LORGQR, CHILDINFO )
  591. END IF
  592. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  593. U2(1,1) = ONE
  594. DO J = 2, M-P
  595. U2(1,J) = ZERO
  596. U2(J,1) = ZERO
  597. END DO
  598. CALL SLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  599. $ LDU2 )
  600. CALL SORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  601. $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  602. END IF
  603. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  604. CALL SLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  605. CALL SORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  606. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  607. END IF
  608. *
  609. * Simultaneously diagonalize X11 and X21.
  610. *
  611. CALL SBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  612. $ THETA, WORK(IPHI), 0, 1, V1T, LDV1T, U2, LDU2, U1,
  613. $ LDU1, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  614. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  615. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  616. $ CHILDINFO )
  617. *
  618. * Permute rows and columns to place identity submatrices in
  619. * preferred positions
  620. *
  621. IF( Q .GT. R ) THEN
  622. DO I = 1, R
  623. IWORK(I) = Q - R + I
  624. END DO
  625. DO I = R + 1, Q
  626. IWORK(I) = I - R
  627. END DO
  628. IF( WANTU1 ) THEN
  629. CALL SLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  630. END IF
  631. IF( WANTV1T ) THEN
  632. CALL SLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  633. END IF
  634. END IF
  635. ELSE
  636. *
  637. * Case 4: R = M-Q
  638. *
  639. * Simultaneously bidiagonalize X11 and X21
  640. *
  641. CALL SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  642. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  643. $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  644. $ LORBDB-M, CHILDINFO )
  645. *
  646. * Accumulate Householder reflectors
  647. *
  648. IF( WANTU1 .AND. P .GT. 0 ) THEN
  649. CALL SCOPY( P, WORK(IORBDB), 1, U1, 1 )
  650. DO J = 2, P
  651. U1(1,J) = ZERO
  652. END DO
  653. CALL SLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  654. $ LDU1 )
  655. CALL SORGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  656. $ WORK(IORGQR), LORGQR, CHILDINFO )
  657. END IF
  658. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  659. CALL SCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  660. DO J = 2, M-P
  661. U2(1,J) = ZERO
  662. END DO
  663. CALL SLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  664. $ LDU2 )
  665. CALL SORGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  666. $ WORK(IORGQR), LORGQR, CHILDINFO )
  667. END IF
  668. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  669. CALL SLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  670. CALL SLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  671. $ V1T(M-Q+1,M-Q+1), LDV1T )
  672. CALL SLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  673. $ V1T(P+1,P+1), LDV1T )
  674. CALL SORGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  675. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  676. END IF
  677. *
  678. * Simultaneously diagonalize X11 and X21.
  679. *
  680. CALL SBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  681. $ THETA, WORK(IPHI), U2, LDU2, U1, LDU1, 0, 1, V1T,
  682. $ LDV1T, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  683. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  684. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  685. $ CHILDINFO )
  686. *
  687. * Permute rows and columns to place identity submatrices in
  688. * preferred positions
  689. *
  690. IF( P .GT. R ) THEN
  691. DO I = 1, R
  692. IWORK(I) = P - R + I
  693. END DO
  694. DO I = R + 1, P
  695. IWORK(I) = I - R
  696. END DO
  697. IF( WANTU1 ) THEN
  698. CALL SLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  699. END IF
  700. IF( WANTV1T ) THEN
  701. CALL SLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  702. END IF
  703. END IF
  704. END IF
  705. *
  706. RETURN
  707. *
  708. * End of SORCSD2BY1
  709. *
  710. END