You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_porpvgrw.f 6.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. *> \brief \b DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_PORPVGRW + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porpvgrw.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porpvgrw.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porpvgrw.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
  22. * LDAF, WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER*1 UPLO
  26. * INTEGER NCOLS, LDA, LDAF
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *>
  39. *> DLA_PORPVGRW computes the reciprocal pivot growth factor
  40. *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
  41. *> much less than 1, the stability of the LU factorization of the
  42. *> (equilibrated) matrix A could be poor. This also means that the
  43. *> solution X, estimated condition numbers, and error bounds could be
  44. *> unreliable.
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] UPLO
  51. *> \verbatim
  52. *> UPLO is CHARACTER*1
  53. *> = 'U': Upper triangle of A is stored;
  54. *> = 'L': Lower triangle of A is stored.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] NCOLS
  58. *> \verbatim
  59. *> NCOLS is INTEGER
  60. *> The number of columns of the matrix A. NCOLS >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] A
  64. *> \verbatim
  65. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  66. *> On entry, the N-by-N matrix A.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] LDA
  70. *> \verbatim
  71. *> LDA is INTEGER
  72. *> The leading dimension of the array A. LDA >= max(1,N).
  73. *> \endverbatim
  74. *>
  75. *> \param[in] AF
  76. *> \verbatim
  77. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  78. *> The triangular factor U or L from the Cholesky factorization
  79. *> A = U**T*U or A = L*L**T, as computed by DPOTRF.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDAF
  83. *> \verbatim
  84. *> LDAF is INTEGER
  85. *> The leading dimension of the array AF. LDAF >= max(1,N).
  86. *> \endverbatim
  87. *>
  88. *> \param[in] WORK
  89. *> \verbatim
  90. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  91. *> \endverbatim
  92. *
  93. * Authors:
  94. * ========
  95. *
  96. *> \author Univ. of Tennessee
  97. *> \author Univ. of California Berkeley
  98. *> \author Univ. of Colorado Denver
  99. *> \author NAG Ltd.
  100. *
  101. *> \date September 2012
  102. *
  103. *> \ingroup doublePOcomputational
  104. *
  105. * =====================================================================
  106. DOUBLE PRECISION FUNCTION DLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
  107. $ LDAF, WORK )
  108. *
  109. * -- LAPACK computational routine (version 3.4.2) --
  110. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  111. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  112. * September 2012
  113. *
  114. * .. Scalar Arguments ..
  115. CHARACTER*1 UPLO
  116. INTEGER NCOLS, LDA, LDAF
  117. * ..
  118. * .. Array Arguments ..
  119. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * )
  120. * ..
  121. *
  122. * =====================================================================
  123. *
  124. * .. Local Scalars ..
  125. INTEGER I, J
  126. DOUBLE PRECISION AMAX, UMAX, RPVGRW
  127. LOGICAL UPPER
  128. * ..
  129. * .. Intrinsic Functions ..
  130. INTRINSIC ABS, MAX, MIN
  131. * ..
  132. * .. External Functions ..
  133. EXTERNAL LSAME, DLASET
  134. LOGICAL LSAME
  135. * ..
  136. * .. Executable Statements ..
  137. *
  138. UPPER = LSAME( 'Upper', UPLO )
  139. *
  140. * DPOTRF will have factored only the NCOLSxNCOLS leading minor, so
  141. * we restrict the growth search to that minor and use only the first
  142. * 2*NCOLS workspace entries.
  143. *
  144. RPVGRW = 1.0D+0
  145. DO I = 1, 2*NCOLS
  146. WORK( I ) = 0.0D+0
  147. END DO
  148. *
  149. * Find the max magnitude entry of each column.
  150. *
  151. IF ( UPPER ) THEN
  152. DO J = 1, NCOLS
  153. DO I = 1, J
  154. WORK( NCOLS+J ) =
  155. $ MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
  156. END DO
  157. END DO
  158. ELSE
  159. DO J = 1, NCOLS
  160. DO I = J, NCOLS
  161. WORK( NCOLS+J ) =
  162. $ MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
  163. END DO
  164. END DO
  165. END IF
  166. *
  167. * Now find the max magnitude entry of each column of the factor in
  168. * AF. No pivoting, so no permutations.
  169. *
  170. IF ( LSAME( 'Upper', UPLO ) ) THEN
  171. DO J = 1, NCOLS
  172. DO I = 1, J
  173. WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
  174. END DO
  175. END DO
  176. ELSE
  177. DO J = 1, NCOLS
  178. DO I = J, NCOLS
  179. WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
  180. END DO
  181. END DO
  182. END IF
  183. *
  184. * Compute the *inverse* of the max element growth factor. Dividing
  185. * by zero would imply the largest entry of the factor's column is
  186. * zero. Than can happen when either the column of A is zero or
  187. * massive pivots made the factor underflow to zero. Neither counts
  188. * as growth in itself, so simply ignore terms with zero
  189. * denominators.
  190. *
  191. IF ( LSAME( 'Upper', UPLO ) ) THEN
  192. DO I = 1, NCOLS
  193. UMAX = WORK( I )
  194. AMAX = WORK( NCOLS+I )
  195. IF ( UMAX /= 0.0D+0 ) THEN
  196. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  197. END IF
  198. END DO
  199. ELSE
  200. DO I = 1, NCOLS
  201. UMAX = WORK( I )
  202. AMAX = WORK( NCOLS+I )
  203. IF ( UMAX /= 0.0D+0 ) THEN
  204. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  205. END IF
  206. END DO
  207. END IF
  208. DLA_PORPVGRW = RPVGRW
  209. END