You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cuncsd2by1.f 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749
  1. *> \brief \b CUNCSD2BY1
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNCSD2BY1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cuncsd2by1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cuncsd2by1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cuncsd2by1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  22. * X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  23. * LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  24. * INFO )
  25. *
  26. * .. Scalar Arguments ..
  27. * CHARACTER JOBU1, JOBU2, JOBV1T
  28. * INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  29. * $ M, P, Q
  30. * INTEGER LRWORK, LRWORKMIN, LRWORKOPT
  31. * ..
  32. * .. Array Arguments ..
  33. * REAL RWORK(*)
  34. * REAL THETA(*)
  35. * COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  36. * $ X11(LDX11,*), X21(LDX21,*)
  37. * INTEGER IWORK(*)
  38. * ..
  39. *
  40. *
  41. *> \par Purpose:
  42. *> =============
  43. *>
  44. *>\verbatim
  45. *>
  46. *> CUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
  47. *> orthonormal columns that has been partitioned into a 2-by-1 block
  48. *> structure:
  49. *>
  50. *> [ I 0 0 ]
  51. *> [ 0 C 0 ]
  52. *> [ X11 ] [ U1 | ] [ 0 0 0 ]
  53. *> X = [-----] = [---------] [----------] V1**T .
  54. *> [ X21 ] [ | U2 ] [ 0 0 0 ]
  55. *> [ 0 S 0 ]
  56. *> [ 0 0 I ]
  57. *>
  58. *> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P,
  59. *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
  60. *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
  61. *> R = MIN(P,M-P,Q,M-Q).
  62. *>
  63. *> \endverbatim
  64. *
  65. * Arguments:
  66. * ==========
  67. *
  68. *> \param[in] JOBU1
  69. *> \verbatim
  70. *> JOBU1 is CHARACTER
  71. *> = 'Y': U1 is computed;
  72. *> otherwise: U1 is not computed.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] JOBU2
  76. *> \verbatim
  77. *> JOBU2 is CHARACTER
  78. *> = 'Y': U2 is computed;
  79. *> otherwise: U2 is not computed.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] JOBV1T
  83. *> \verbatim
  84. *> JOBV1T is CHARACTER
  85. *> = 'Y': V1T is computed;
  86. *> otherwise: V1T is not computed.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] M
  90. *> \verbatim
  91. *> M is INTEGER
  92. *> The number of rows in X.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] P
  96. *> \verbatim
  97. *> P is INTEGER
  98. *> The number of rows in X11. 0 <= P <= M.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] Q
  102. *> \verbatim
  103. *> Q is INTEGER
  104. *> The number of columns in X11 and X21. 0 <= Q <= M.
  105. *> \endverbatim
  106. *>
  107. *> \param[in,out] X11
  108. *> \verbatim
  109. *> X11 is COMPLEX array, dimension (LDX11,Q)
  110. *> On entry, part of the unitary matrix whose CSD is desired.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDX11
  114. *> \verbatim
  115. *> LDX11 is INTEGER
  116. *> The leading dimension of X11. LDX11 >= MAX(1,P).
  117. *> \endverbatim
  118. *>
  119. *> \param[in,out] X21
  120. *> \verbatim
  121. *> X21 is COMPLEX array, dimension (LDX21,Q)
  122. *> On entry, part of the unitary matrix whose CSD is desired.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDX21
  126. *> \verbatim
  127. *> LDX21 is INTEGER
  128. *> The leading dimension of X21. LDX21 >= MAX(1,M-P).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] THETA
  132. *> \verbatim
  133. *> THETA is REAL array, dimension (R), in which R =
  134. *> MIN(P,M-P,Q,M-Q).
  135. *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  136. *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  137. *> \endverbatim
  138. *>
  139. *> \param[out] U1
  140. *> \verbatim
  141. *> U1 is COMPLEX array, dimension (P)
  142. *> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] LDU1
  146. *> \verbatim
  147. *> LDU1 is INTEGER
  148. *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  149. *> MAX(1,P).
  150. *> \endverbatim
  151. *>
  152. *> \param[out] U2
  153. *> \verbatim
  154. *> U2 is COMPLEX array, dimension (M-P)
  155. *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  156. *> matrix U2.
  157. *> \endverbatim
  158. *>
  159. *> \param[in] LDU2
  160. *> \verbatim
  161. *> LDU2 is INTEGER
  162. *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  163. *> MAX(1,M-P).
  164. *> \endverbatim
  165. *>
  166. *> \param[out] V1T
  167. *> \verbatim
  168. *> V1T is COMPLEX array, dimension (Q)
  169. *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  170. *> matrix V1**T.
  171. *> \endverbatim
  172. *>
  173. *> \param[in] LDV1T
  174. *> \verbatim
  175. *> LDV1T is INTEGER
  176. *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  177. *> MAX(1,Q).
  178. *> \endverbatim
  179. *>
  180. *> \param[out] WORK
  181. *> \verbatim
  182. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  183. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  184. *> \endverbatim
  185. *>
  186. *> \param[in] LWORK
  187. *> \verbatim
  188. *> LWORK is INTEGER
  189. *> The dimension of the array WORK.
  190. *>
  191. *> If LWORK = -1, then a workspace query is assumed; the routine
  192. *> only calculates the optimal size of the WORK array, returns
  193. *> this value as the first entry of the work array, and no error
  194. *> message related to LWORK is issued by XERBLA.
  195. *> \endverbatim
  196. *>
  197. *> \param[out] RWORK
  198. *> \verbatim
  199. *> RWORK is REAL array, dimension (MAX(1,LRWORK))
  200. *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  201. *> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  202. *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  203. *> define the matrix in intermediate bidiagonal-block form
  204. *> remaining after nonconvergence. INFO specifies the number
  205. *> of nonzero PHI's.
  206. *> \endverbatim
  207. *>
  208. *> \param[in] LRWORK
  209. *> \verbatim
  210. *> LRWORK is INTEGER
  211. *> The dimension of the array RWORK.
  212. *>
  213. *> If LRWORK = -1, then a workspace query is assumed; the routine
  214. *> only calculates the optimal size of the RWORK array, returns
  215. *> this value as the first entry of the work array, and no error
  216. *> message related to LRWORK is issued by XERBLA.
  217. *> \endverbatim
  218. *
  219. *> \param[out] IWORK
  220. *> \verbatim
  221. *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  222. *> \endverbatim
  223. *>
  224. *> \param[out] INFO
  225. *> \verbatim
  226. *> INFO is INTEGER
  227. *> = 0: successful exit.
  228. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  229. *> > 0: CBBCSD did not converge. See the description of WORK
  230. *> above for details.
  231. *> \endverbatim
  232. *
  233. *> \par References:
  234. * ================
  235. *>
  236. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  237. *> Algorithms, 50(1):33-65, 2009.
  238. *
  239. * Authors:
  240. * ========
  241. *
  242. *> \author Univ. of Tennessee
  243. *> \author Univ. of California Berkeley
  244. *> \author Univ. of Colorado Denver
  245. *> \author NAG Ltd.
  246. *
  247. *> \date July 2012
  248. *
  249. *> \ingroup complexOTHERcomputational
  250. *
  251. * =====================================================================
  252. SUBROUTINE CUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  253. $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  254. $ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  255. $ INFO )
  256. *
  257. * -- LAPACK computational routine (version 3.6.0) --
  258. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  259. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  260. * July 2012
  261. *
  262. * .. Scalar Arguments ..
  263. CHARACTER JOBU1, JOBU2, JOBV1T
  264. INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  265. $ M, P, Q
  266. INTEGER LRWORK, LRWORKMIN, LRWORKOPT
  267. * ..
  268. * .. Array Arguments ..
  269. REAL RWORK(*)
  270. REAL THETA(*)
  271. COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  272. $ X11(LDX11,*), X21(LDX21,*)
  273. INTEGER IWORK(*)
  274. * ..
  275. *
  276. * =====================================================================
  277. *
  278. * .. Parameters ..
  279. COMPLEX ONE, ZERO
  280. PARAMETER ( ONE = (1.0E0,0.0E0), ZERO = (0.0E0,0.0E0) )
  281. * ..
  282. * .. Local Scalars ..
  283. INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  284. $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  285. $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  286. $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  287. $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  288. $ LWORKMIN, LWORKOPT, R
  289. LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
  290. * ..
  291. * .. External Subroutines ..
  292. EXTERNAL CBBCSD, CCOPY, CLACPY, CLAPMR, CLAPMT, CUNBDB1,
  293. $ CUNBDB2, CUNBDB3, CUNBDB4, CUNGLQ, CUNGQR,
  294. $ XERBLA
  295. * ..
  296. * .. External Functions ..
  297. LOGICAL LSAME
  298. EXTERNAL LSAME
  299. * ..
  300. * .. Intrinsic Function ..
  301. INTRINSIC INT, MAX, MIN
  302. * ..
  303. * .. Executable Statements ..
  304. *
  305. * Test input arguments
  306. *
  307. INFO = 0
  308. WANTU1 = LSAME( JOBU1, 'Y' )
  309. WANTU2 = LSAME( JOBU2, 'Y' )
  310. WANTV1T = LSAME( JOBV1T, 'Y' )
  311. LQUERY = LWORK .EQ. -1
  312. *
  313. IF( M .LT. 0 ) THEN
  314. INFO = -4
  315. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  316. INFO = -5
  317. ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  318. INFO = -6
  319. ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  320. INFO = -8
  321. ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  322. INFO = -10
  323. ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  324. INFO = -13
  325. ELSE IF( WANTU2 .AND. LDU2 .LT. M - P ) THEN
  326. INFO = -15
  327. ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  328. INFO = -17
  329. END IF
  330. *
  331. R = MIN( P, M-P, Q, M-Q )
  332. *
  333. * Compute workspace
  334. *
  335. * WORK layout:
  336. * |-----------------------------------------|
  337. * | LWORKOPT (1) |
  338. * |-----------------------------------------|
  339. * | TAUP1 (MAX(1,P)) |
  340. * | TAUP2 (MAX(1,M-P)) |
  341. * | TAUQ1 (MAX(1,Q)) |
  342. * |-----------------------------------------|
  343. * | CUNBDB WORK | CUNGQR WORK | CUNGLQ WORK |
  344. * | | | |
  345. * | | | |
  346. * | | | |
  347. * | | | |
  348. * |-----------------------------------------|
  349. * RWORK layout:
  350. * |------------------|
  351. * | LRWORKOPT (1) |
  352. * |------------------|
  353. * | PHI (MAX(1,R-1)) |
  354. * |------------------|
  355. * | B11D (R) |
  356. * | B11E (R-1) |
  357. * | B12D (R) |
  358. * | B12E (R-1) |
  359. * | B21D (R) |
  360. * | B21E (R-1) |
  361. * | B22D (R) |
  362. * | B22E (R-1) |
  363. * | CBBCSD RWORK |
  364. * |------------------|
  365. *
  366. IF( INFO .EQ. 0 ) THEN
  367. IPHI = 2
  368. IB11D = IPHI + MAX( 1, R-1 )
  369. IB11E = IB11D + MAX( 1, R )
  370. IB12D = IB11E + MAX( 1, R - 1 )
  371. IB12E = IB12D + MAX( 1, R )
  372. IB21D = IB12E + MAX( 1, R - 1 )
  373. IB21E = IB21D + MAX( 1, R )
  374. IB22D = IB21E + MAX( 1, R - 1 )
  375. IB22E = IB22D + MAX( 1, R )
  376. IBBCSD = IB22E + MAX( 1, R - 1 )
  377. ITAUP1 = 2
  378. ITAUP2 = ITAUP1 + MAX( 1, P )
  379. ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  380. IORBDB = ITAUQ1 + MAX( 1, Q )
  381. IORGQR = ITAUQ1 + MAX( 1, Q )
  382. IORGLQ = ITAUQ1 + MAX( 1, Q )
  383. IF( R .EQ. Q ) THEN
  384. CALL CUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  385. $ 0, 0, WORK, -1, CHILDINFO )
  386. LORBDB = INT( WORK(1) )
  387. IF( P .GE. M-P ) THEN
  388. CALL CUNGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  389. $ CHILDINFO )
  390. LORGQRMIN = MAX( 1, P )
  391. LORGQROPT = INT( WORK(1) )
  392. ELSE
  393. CALL CUNGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  394. $ CHILDINFO )
  395. LORGQRMIN = MAX( 1, M-P )
  396. LORGQROPT = INT( WORK(1) )
  397. END IF
  398. CALL CUNGLQ( MAX(0,Q-1), MAX(0,Q-1), MAX(0,Q-1), V1T, LDV1T,
  399. $ 0, WORK(1), -1, CHILDINFO )
  400. LORGLQMIN = MAX( 1, Q-1 )
  401. LORGLQOPT = INT( WORK(1) )
  402. CALL CBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  403. $ 0, U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1, 0, 0,
  404. $ 0, 0, 0, 0, 0, 0, RWORK(1), -1, CHILDINFO )
  405. LBBCSD = INT( RWORK(1) )
  406. ELSE IF( R .EQ. P ) THEN
  407. CALL CUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  408. $ 0, 0, WORK(1), -1, CHILDINFO )
  409. LORBDB = INT( WORK(1) )
  410. IF( P-1 .GE. M-P ) THEN
  411. CALL CUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, 0, WORK(1),
  412. $ -1, CHILDINFO )
  413. LORGQRMIN = MAX( 1, P-1 )
  414. LORGQROPT = INT( WORK(1) )
  415. ELSE
  416. CALL CUNGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  417. $ CHILDINFO )
  418. LORGQRMIN = MAX( 1, M-P )
  419. LORGQROPT = INT( WORK(1) )
  420. END IF
  421. CALL CUNGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  422. $ CHILDINFO )
  423. LORGLQMIN = MAX( 1, Q )
  424. LORGLQOPT = INT( WORK(1) )
  425. CALL CBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  426. $ 0, V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2, 0, 0,
  427. $ 0, 0, 0, 0, 0, 0, RWORK(1), -1, CHILDINFO )
  428. LBBCSD = INT( RWORK(1) )
  429. ELSE IF( R .EQ. M-P ) THEN
  430. CALL CUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  431. $ 0, 0, WORK(1), -1, CHILDINFO )
  432. LORBDB = INT( WORK(1) )
  433. IF( P .GE. M-P-1 ) THEN
  434. CALL CUNGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  435. $ CHILDINFO )
  436. LORGQRMIN = MAX( 1, P )
  437. LORGQROPT = INT( WORK(1) )
  438. ELSE
  439. CALL CUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, 0,
  440. $ WORK(1), -1, CHILDINFO )
  441. LORGQRMIN = MAX( 1, M-P-1 )
  442. LORGQROPT = INT( WORK(1) )
  443. END IF
  444. CALL CUNGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  445. $ CHILDINFO )
  446. LORGLQMIN = MAX( 1, Q )
  447. LORGLQOPT = INT( WORK(1) )
  448. CALL CBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  449. $ THETA, 0, 0, 1, V1T, LDV1T, U2, LDU2, U1, LDU1,
  450. $ 0, 0, 0, 0, 0, 0, 0, 0, RWORK(1), -1,
  451. $ CHILDINFO )
  452. LBBCSD = INT( RWORK(1) )
  453. ELSE
  454. CALL CUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  455. $ 0, 0, 0, WORK(1), -1, CHILDINFO )
  456. LORBDB = M + INT( WORK(1) )
  457. IF( P .GE. M-P ) THEN
  458. CALL CUNGQR( P, P, M-Q, U1, LDU1, 0, WORK(1), -1,
  459. $ CHILDINFO )
  460. LORGQRMIN = MAX( 1, P )
  461. LORGQROPT = INT( WORK(1) )
  462. ELSE
  463. CALL CUNGQR( M-P, M-P, M-Q, U2, LDU2, 0, WORK(1), -1,
  464. $ CHILDINFO )
  465. LORGQRMIN = MAX( 1, M-P )
  466. LORGQROPT = INT( WORK(1) )
  467. END IF
  468. CALL CUNGLQ( Q, Q, Q, V1T, LDV1T, 0, WORK(1), -1,
  469. $ CHILDINFO )
  470. LORGLQMIN = MAX( 1, Q )
  471. LORGLQOPT = INT( WORK(1) )
  472. CALL CBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  473. $ THETA, 0, U2, LDU2, U1, LDU1, 0, 1, V1T, LDV1T,
  474. $ 0, 0, 0, 0, 0, 0, 0, 0, RWORK(1), -1,
  475. $ CHILDINFO )
  476. LBBCSD = INT( RWORK(1) )
  477. END IF
  478. LRWORKMIN = IBBCSD+LBBCSD-1
  479. LRWORKOPT = LRWORKMIN
  480. RWORK(1) = LRWORKOPT
  481. LWORKMIN = MAX( IORBDB+LORBDB-1,
  482. $ IORGQR+LORGQRMIN-1,
  483. $ IORGLQ+LORGLQMIN-1 )
  484. LWORKOPT = MAX( IORBDB+LORBDB-1,
  485. $ IORGQR+LORGQROPT-1,
  486. $ IORGLQ+LORGLQOPT-1 )
  487. WORK(1) = LWORKOPT
  488. IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  489. INFO = -19
  490. END IF
  491. END IF
  492. IF( INFO .NE. 0 ) THEN
  493. CALL XERBLA( 'CUNCSD2BY1', -INFO )
  494. RETURN
  495. ELSE IF( LQUERY ) THEN
  496. RETURN
  497. END IF
  498. LORGQR = LWORK-IORGQR+1
  499. LORGLQ = LWORK-IORGLQ+1
  500. *
  501. * Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  502. * in which R = MIN(P,M-P,Q,M-Q)
  503. *
  504. IF( R .EQ. Q ) THEN
  505. *
  506. * Case 1: R = Q
  507. *
  508. * Simultaneously bidiagonalize X11 and X21
  509. *
  510. CALL CUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  511. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  512. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  513. *
  514. * Accumulate Householder reflectors
  515. *
  516. IF( WANTU1 .AND. P .GT. 0 ) THEN
  517. CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  518. CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  519. $ LORGQR, CHILDINFO )
  520. END IF
  521. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  522. CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  523. CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  524. $ WORK(IORGQR), LORGQR, CHILDINFO )
  525. END IF
  526. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  527. V1T(1,1) = ONE
  528. DO J = 2, Q
  529. V1T(1,J) = ZERO
  530. V1T(J,1) = ZERO
  531. END DO
  532. CALL CLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  533. $ LDV1T )
  534. CALL CUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  535. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  536. END IF
  537. *
  538. * Simultaneously diagonalize X11 and X21.
  539. *
  540. CALL CBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  541. $ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1,
  542. $ RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  543. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  544. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  545. $ CHILDINFO )
  546. *
  547. * Permute rows and columns to place zero submatrices in
  548. * preferred positions
  549. *
  550. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  551. DO I = 1, Q
  552. IWORK(I) = M - P - Q + I
  553. END DO
  554. DO I = Q + 1, M - P
  555. IWORK(I) = I - Q
  556. END DO
  557. CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  558. END IF
  559. ELSE IF( R .EQ. P ) THEN
  560. *
  561. * Case 2: R = P
  562. *
  563. * Simultaneously bidiagonalize X11 and X21
  564. *
  565. CALL CUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  566. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  567. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  568. *
  569. * Accumulate Householder reflectors
  570. *
  571. IF( WANTU1 .AND. P .GT. 0 ) THEN
  572. U1(1,1) = ONE
  573. DO J = 2, P
  574. U1(1,J) = ZERO
  575. U1(J,1) = ZERO
  576. END DO
  577. CALL CLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  578. CALL CUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  579. $ WORK(IORGQR), LORGQR, CHILDINFO )
  580. END IF
  581. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  582. CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  583. CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  584. $ WORK(IORGQR), LORGQR, CHILDINFO )
  585. END IF
  586. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  587. CALL CLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  588. CALL CUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  589. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  590. END IF
  591. *
  592. * Simultaneously diagonalize X11 and X21.
  593. *
  594. CALL CBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  595. $ RWORK(IPHI), V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2,
  596. $ RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  597. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  598. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  599. $ CHILDINFO )
  600. *
  601. * Permute rows and columns to place identity submatrices in
  602. * preferred positions
  603. *
  604. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  605. DO I = 1, Q
  606. IWORK(I) = M - P - Q + I
  607. END DO
  608. DO I = Q + 1, M - P
  609. IWORK(I) = I - Q
  610. END DO
  611. CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  612. END IF
  613. ELSE IF( R .EQ. M-P ) THEN
  614. *
  615. * Case 3: R = M-P
  616. *
  617. * Simultaneously bidiagonalize X11 and X21
  618. *
  619. CALL CUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  620. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  621. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  622. *
  623. * Accumulate Householder reflectors
  624. *
  625. IF( WANTU1 .AND. P .GT. 0 ) THEN
  626. CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  627. CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  628. $ LORGQR, CHILDINFO )
  629. END IF
  630. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  631. U2(1,1) = ONE
  632. DO J = 2, M-P
  633. U2(1,J) = ZERO
  634. U2(J,1) = ZERO
  635. END DO
  636. CALL CLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  637. $ LDU2 )
  638. CALL CUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  639. $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  640. END IF
  641. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  642. CALL CLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  643. CALL CUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  644. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  645. END IF
  646. *
  647. * Simultaneously diagonalize X11 and X21.
  648. *
  649. CALL CBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  650. $ THETA, RWORK(IPHI), 0, 1, V1T, LDV1T, U2, LDU2,
  651. $ U1, LDU1, RWORK(IB11D), RWORK(IB11E),
  652. $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  653. $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  654. $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
  655. *
  656. * Permute rows and columns to place identity submatrices in
  657. * preferred positions
  658. *
  659. IF( Q .GT. R ) THEN
  660. DO I = 1, R
  661. IWORK(I) = Q - R + I
  662. END DO
  663. DO I = R + 1, Q
  664. IWORK(I) = I - R
  665. END DO
  666. IF( WANTU1 ) THEN
  667. CALL CLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  668. END IF
  669. IF( WANTV1T ) THEN
  670. CALL CLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  671. END IF
  672. END IF
  673. ELSE
  674. *
  675. * Case 4: R = M-Q
  676. *
  677. * Simultaneously bidiagonalize X11 and X21
  678. *
  679. CALL CUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  680. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  681. $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  682. $ LORBDB-M, CHILDINFO )
  683. *
  684. * Accumulate Householder reflectors
  685. *
  686. IF( WANTU1 .AND. P .GT. 0 ) THEN
  687. CALL CCOPY( P, WORK(IORBDB), 1, U1, 1 )
  688. DO J = 2, P
  689. U1(1,J) = ZERO
  690. END DO
  691. CALL CLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  692. $ LDU1 )
  693. CALL CUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  694. $ WORK(IORGQR), LORGQR, CHILDINFO )
  695. END IF
  696. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  697. CALL CCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  698. DO J = 2, M-P
  699. U2(1,J) = ZERO
  700. END DO
  701. CALL CLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  702. $ LDU2 )
  703. CALL CUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  704. $ WORK(IORGQR), LORGQR, CHILDINFO )
  705. END IF
  706. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  707. CALL CLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  708. CALL CLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  709. $ V1T(M-Q+1,M-Q+1), LDV1T )
  710. CALL CLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  711. $ V1T(P+1,P+1), LDV1T )
  712. CALL CUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  713. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  714. END IF
  715. *
  716. * Simultaneously diagonalize X11 and X21.
  717. *
  718. CALL CBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  719. $ THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, 0, 1, V1T,
  720. $ LDV1T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  721. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  722. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  723. $ CHILDINFO )
  724. *
  725. * Permute rows and columns to place identity submatrices in
  726. * preferred positions
  727. *
  728. IF( P .GT. R ) THEN
  729. DO I = 1, R
  730. IWORK(I) = P - R + I
  731. END DO
  732. DO I = R + 1, P
  733. IWORK(I) = I - R
  734. END DO
  735. IF( WANTU1 ) THEN
  736. CALL CLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  737. END IF
  738. IF( WANTV1T ) THEN
  739. CALL CLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  740. END IF
  741. END IF
  742. END IF
  743. *
  744. RETURN
  745. *
  746. * End of CUNCSD2BY1
  747. *
  748. END