You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhet01_rook.f 6.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. *> \brief \b ZHET01_ROOK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZHET01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
  12. * RWORK, RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER LDA, LDAFAC, LDC, N
  17. * DOUBLE PRECISION RESID
  18. * ..
  19. * .. Array Arguments ..
  20. * INTEGER IPIV( * )
  21. * DOUBLE PRECISION RWORK( * )
  22. * COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
  23. * ..
  24. *
  25. *
  26. *> \par Purpose:
  27. * =============
  28. *>
  29. *> \verbatim
  30. *>
  31. *> ZHET01_ROOK reconstructs a complex Hermitian indefinite matrix A from its
  32. *> block L*D*L' or U*D*U' factorization and computes the residual
  33. *> norm( C - A ) / ( N * norm(A) * EPS ),
  34. *> where C is the reconstructed matrix, EPS is the machine epsilon,
  35. *> L' is the transpose of L, and U' is the transpose of U.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] UPLO
  42. *> \verbatim
  43. *> UPLO is CHARACTER*1
  44. *> Specifies whether the upper or lower triangular part of the
  45. *> complex Hermitian matrix A is stored:
  46. *> = 'U': Upper triangular
  47. *> = 'L': Lower triangular
  48. *> \endverbatim
  49. *>
  50. *> \param[in] N
  51. *> \verbatim
  52. *> N is INTEGER
  53. *> The number of rows and columns of the matrix A. N >= 0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] A
  57. *> \verbatim
  58. *> A is COMPLEX*16 array, dimension (LDA,N)
  59. *> The original complex Hermitian matrix A.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] LDA
  63. *> \verbatim
  64. *> LDA is INTEGER
  65. *> The leading dimension of the array A. LDA >= max(1,N)
  66. *> \endverbatim
  67. *>
  68. *> \param[in] AFAC
  69. *> \verbatim
  70. *> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
  71. *> The factored form of the matrix A. AFAC contains the block
  72. *> diagonal matrix D and the multipliers used to obtain the
  73. *> factor L or U from the block L*D*L' or U*D*U' factorization
  74. *> as computed by CSYTRF_ROOK.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDAFAC
  78. *> \verbatim
  79. *> LDAFAC is INTEGER
  80. *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] IPIV
  84. *> \verbatim
  85. *> IPIV is INTEGER array, dimension (N)
  86. *> The pivot indices from CSYTRF_ROOK.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] C
  90. *> \verbatim
  91. *> C is COMPLEX*16 array, dimension (LDC,N)
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDC
  95. *> \verbatim
  96. *> LDC is INTEGER
  97. *> The leading dimension of the array C. LDC >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[out] RWORK
  101. *> \verbatim
  102. *> RWORK is DOUBLE PRECISION array, dimension (N)
  103. *> \endverbatim
  104. *>
  105. *> \param[out] RESID
  106. *> \verbatim
  107. *> RESID is DOUBLE PRECISION
  108. *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
  109. *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \date November 2013
  121. *
  122. *> \ingroup complex16_lin
  123. *
  124. * =====================================================================
  125. SUBROUTINE ZHET01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
  126. $ LDC, RWORK, RESID )
  127. *
  128. * -- LAPACK test routine (version 3.5.0) --
  129. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  130. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  131. * November 2013
  132. *
  133. * .. Scalar Arguments ..
  134. CHARACTER UPLO
  135. INTEGER LDA, LDAFAC, LDC, N
  136. DOUBLE PRECISION RESID
  137. * ..
  138. * .. Array Arguments ..
  139. INTEGER IPIV( * )
  140. DOUBLE PRECISION RWORK( * )
  141. COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
  142. * ..
  143. *
  144. * =====================================================================
  145. *
  146. * .. Parameters ..
  147. DOUBLE PRECISION ZERO, ONE
  148. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  149. COMPLEX*16 CZERO, CONE
  150. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  151. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  152. * ..
  153. * .. Local Scalars ..
  154. INTEGER I, INFO, J
  155. DOUBLE PRECISION ANORM, EPS
  156. * ..
  157. * .. External Functions ..
  158. LOGICAL LSAME
  159. DOUBLE PRECISION ZLANHE, DLAMCH
  160. EXTERNAL LSAME, ZLANHE, DLAMCH
  161. * ..
  162. * .. External Subroutines ..
  163. EXTERNAL ZLASET, ZLAVHE_ROOK
  164. * ..
  165. * .. Intrinsic Functions ..
  166. INTRINSIC DIMAG, DBLE
  167. * ..
  168. * .. Executable Statements ..
  169. *
  170. * Quick exit if N = 0.
  171. *
  172. IF( N.LE.0 ) THEN
  173. RESID = ZERO
  174. RETURN
  175. END IF
  176. *
  177. * Determine EPS and the norm of A.
  178. *
  179. EPS = DLAMCH( 'Epsilon' )
  180. ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
  181. *
  182. * Check the imaginary parts of the diagonal elements and return with
  183. * an error code if any are nonzero.
  184. *
  185. DO 10 J = 1, N
  186. IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
  187. RESID = ONE / EPS
  188. RETURN
  189. END IF
  190. 10 CONTINUE
  191. *
  192. * Initialize C to the identity matrix.
  193. *
  194. CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
  195. *
  196. * Call ZLAVHE_ROOK to form the product D * U' (or D * L' ).
  197. *
  198. CALL ZLAVHE_ROOK( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC,
  199. $ LDAFAC, IPIV, C, LDC, INFO )
  200. *
  201. * Call ZLAVHE_ROOK again to multiply by U (or L ).
  202. *
  203. CALL ZLAVHE_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
  204. $ LDAFAC, IPIV, C, LDC, INFO )
  205. *
  206. * Compute the difference C - A .
  207. *
  208. IF( LSAME( UPLO, 'U' ) ) THEN
  209. DO 30 J = 1, N
  210. DO 20 I = 1, J - 1
  211. C( I, J ) = C( I, J ) - A( I, J )
  212. 20 CONTINUE
  213. C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
  214. 30 CONTINUE
  215. ELSE
  216. DO 50 J = 1, N
  217. C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
  218. DO 40 I = J + 1, N
  219. C( I, J ) = C( I, J ) - A( I, J )
  220. 40 CONTINUE
  221. 50 CONTINUE
  222. END IF
  223. *
  224. * Compute norm( C - A ) / ( N * norm(A) * EPS )
  225. *
  226. RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
  227. *
  228. IF( ANORM.LE.ZERO ) THEN
  229. IF( RESID.NE.ZERO )
  230. $ RESID = ONE / EPS
  231. ELSE
  232. RESID = ( ( RESID/DBLE( N ) )/ANORM ) / EPS
  233. END IF
  234. *
  235. RETURN
  236. *
  237. * End of ZHET01_ROOK
  238. *
  239. END