You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zchkgt.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558
  1. *> \brief \b ZCHKGT
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
  12. * A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
  13. *
  14. * .. Scalar Arguments ..
  15. * LOGICAL TSTERR
  16. * INTEGER NN, NNS, NOUT
  17. * DOUBLE PRECISION THRESH
  18. * ..
  19. * .. Array Arguments ..
  20. * LOGICAL DOTYPE( * )
  21. * INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
  22. * DOUBLE PRECISION RWORK( * )
  23. * COMPLEX*16 A( * ), AF( * ), B( * ), WORK( * ), X( * ),
  24. * $ XACT( * )
  25. * ..
  26. *
  27. *
  28. *> \par Purpose:
  29. * =============
  30. *>
  31. *> \verbatim
  32. *>
  33. *> ZCHKGT tests ZGTTRF, -TRS, -RFS, and -CON
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] DOTYPE
  40. *> \verbatim
  41. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  42. *> The matrix types to be used for testing. Matrices of type j
  43. *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
  44. *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
  45. *> \endverbatim
  46. *>
  47. *> \param[in] NN
  48. *> \verbatim
  49. *> NN is INTEGER
  50. *> The number of values of N contained in the vector NVAL.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] NVAL
  54. *> \verbatim
  55. *> NVAL is INTEGER array, dimension (NN)
  56. *> The values of the matrix dimension N.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] NNS
  60. *> \verbatim
  61. *> NNS is INTEGER
  62. *> The number of values of NRHS contained in the vector NSVAL.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] NSVAL
  66. *> \verbatim
  67. *> NSVAL is INTEGER array, dimension (NNS)
  68. *> The values of the number of right hand sides NRHS.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] THRESH
  72. *> \verbatim
  73. *> THRESH is DOUBLE PRECISION
  74. *> The threshold value for the test ratios. A result is
  75. *> included in the output file if RESULT >= THRESH. To have
  76. *> every test ratio printed, use THRESH = 0.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] TSTERR
  80. *> \verbatim
  81. *> TSTERR is LOGICAL
  82. *> Flag that indicates whether error exits are to be tested.
  83. *> \endverbatim
  84. *>
  85. *> \param[out] A
  86. *> \verbatim
  87. *> A is COMPLEX*16 array, dimension (NMAX*4)
  88. *> \endverbatim
  89. *>
  90. *> \param[out] AF
  91. *> \verbatim
  92. *> AF is COMPLEX*16 array, dimension (NMAX*4)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] B
  96. *> \verbatim
  97. *> B is COMPLEX*16 array, dimension (NMAX*NSMAX)
  98. *> where NSMAX is the largest entry in NSVAL.
  99. *> \endverbatim
  100. *>
  101. *> \param[out] X
  102. *> \verbatim
  103. *> X is COMPLEX*16 array, dimension (NMAX*NSMAX)
  104. *> \endverbatim
  105. *>
  106. *> \param[out] XACT
  107. *> \verbatim
  108. *> XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
  109. *> \endverbatim
  110. *>
  111. *> \param[out] WORK
  112. *> \verbatim
  113. *> WORK is COMPLEX*16 array, dimension
  114. *> (NMAX*max(3,NSMAX))
  115. *> \endverbatim
  116. *>
  117. *> \param[out] RWORK
  118. *> \verbatim
  119. *> RWORK is DOUBLE PRECISION array, dimension
  120. *> (max(NMAX)+2*NSMAX)
  121. *> \endverbatim
  122. *>
  123. *> \param[out] IWORK
  124. *> \verbatim
  125. *> IWORK is INTEGER array, dimension (NMAX)
  126. *> \endverbatim
  127. *>
  128. *> \param[in] NOUT
  129. *> \verbatim
  130. *> NOUT is INTEGER
  131. *> The unit number for output.
  132. *> \endverbatim
  133. *
  134. * Authors:
  135. * ========
  136. *
  137. *> \author Univ. of Tennessee
  138. *> \author Univ. of California Berkeley
  139. *> \author Univ. of Colorado Denver
  140. *> \author NAG Ltd.
  141. *
  142. *> \date December 2016
  143. *
  144. *> \ingroup complex16_lin
  145. *
  146. * =====================================================================
  147. SUBROUTINE ZCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
  148. $ A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
  149. *
  150. * -- LAPACK test routine (version 3.7.0) --
  151. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  152. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  153. * December 2016
  154. *
  155. * .. Scalar Arguments ..
  156. LOGICAL TSTERR
  157. INTEGER NN, NNS, NOUT
  158. DOUBLE PRECISION THRESH
  159. * ..
  160. * .. Array Arguments ..
  161. LOGICAL DOTYPE( * )
  162. INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
  163. DOUBLE PRECISION RWORK( * )
  164. COMPLEX*16 A( * ), AF( * ), B( * ), WORK( * ), X( * ),
  165. $ XACT( * )
  166. * ..
  167. *
  168. * =====================================================================
  169. *
  170. * .. Parameters ..
  171. DOUBLE PRECISION ONE, ZERO
  172. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  173. INTEGER NTYPES
  174. PARAMETER ( NTYPES = 12 )
  175. INTEGER NTESTS
  176. PARAMETER ( NTESTS = 7 )
  177. * ..
  178. * .. Local Scalars ..
  179. LOGICAL TRFCON, ZEROT
  180. CHARACTER DIST, NORM, TRANS, TYPE
  181. CHARACTER*3 PATH
  182. INTEGER I, IMAT, IN, INFO, IRHS, ITRAN, IX, IZERO, J,
  183. $ K, KL, KOFF, KU, LDA, M, MODE, N, NERRS, NFAIL,
  184. $ NIMAT, NRHS, NRUN
  185. DOUBLE PRECISION AINVNM, ANORM, COND, RCOND, RCONDC, RCONDI,
  186. $ RCONDO
  187. * ..
  188. * .. Local Arrays ..
  189. CHARACTER TRANSS( 3 )
  190. INTEGER ISEED( 4 ), ISEEDY( 4 )
  191. DOUBLE PRECISION RESULT( NTESTS )
  192. COMPLEX*16 Z( 3 )
  193. * ..
  194. * .. External Functions ..
  195. DOUBLE PRECISION DGET06, DZASUM, ZLANGT
  196. EXTERNAL DGET06, DZASUM, ZLANGT
  197. * ..
  198. * .. External Subroutines ..
  199. EXTERNAL ALAERH, ALAHD, ALASUM, ZCOPY, ZDSCAL, ZERRGE,
  200. $ ZGET04, ZGTCON, ZGTRFS, ZGTT01, ZGTT02, ZGTT05,
  201. $ ZGTTRF, ZGTTRS, ZLACPY, ZLAGTM, ZLARNV, ZLATB4,
  202. $ ZLATMS
  203. * ..
  204. * .. Intrinsic Functions ..
  205. INTRINSIC MAX
  206. * ..
  207. * .. Scalars in Common ..
  208. LOGICAL LERR, OK
  209. CHARACTER*32 SRNAMT
  210. INTEGER INFOT, NUNIT
  211. * ..
  212. * .. Common blocks ..
  213. COMMON / INFOC / INFOT, NUNIT, OK, LERR
  214. COMMON / SRNAMC / SRNAMT
  215. * ..
  216. * .. Data statements ..
  217. DATA ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
  218. $ 'C' /
  219. * ..
  220. * .. Executable Statements ..
  221. *
  222. PATH( 1: 1 ) = 'Zomplex precision'
  223. PATH( 2: 3 ) = 'GT'
  224. NRUN = 0
  225. NFAIL = 0
  226. NERRS = 0
  227. DO 10 I = 1, 4
  228. ISEED( I ) = ISEEDY( I )
  229. 10 CONTINUE
  230. *
  231. * Test the error exits
  232. *
  233. IF( TSTERR )
  234. $ CALL ZERRGE( PATH, NOUT )
  235. INFOT = 0
  236. *
  237. DO 110 IN = 1, NN
  238. *
  239. * Do for each value of N in NVAL.
  240. *
  241. N = NVAL( IN )
  242. M = MAX( N-1, 0 )
  243. LDA = MAX( 1, N )
  244. NIMAT = NTYPES
  245. IF( N.LE.0 )
  246. $ NIMAT = 1
  247. *
  248. DO 100 IMAT = 1, NIMAT
  249. *
  250. * Do the tests only if DOTYPE( IMAT ) is true.
  251. *
  252. IF( .NOT.DOTYPE( IMAT ) )
  253. $ GO TO 100
  254. *
  255. * Set up parameters with ZLATB4.
  256. *
  257. CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
  258. $ COND, DIST )
  259. *
  260. ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
  261. IF( IMAT.LE.6 ) THEN
  262. *
  263. * Types 1-6: generate matrices of known condition number.
  264. *
  265. KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
  266. SRNAMT = 'ZLATMS'
  267. CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
  268. $ ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
  269. $ INFO )
  270. *
  271. * Check the error code from ZLATMS.
  272. *
  273. IF( INFO.NE.0 ) THEN
  274. CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N, KL,
  275. $ KU, -1, IMAT, NFAIL, NERRS, NOUT )
  276. GO TO 100
  277. END IF
  278. IZERO = 0
  279. *
  280. IF( N.GT.1 ) THEN
  281. CALL ZCOPY( N-1, AF( 4 ), 3, A, 1 )
  282. CALL ZCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
  283. END IF
  284. CALL ZCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
  285. ELSE
  286. *
  287. * Types 7-12: generate tridiagonal matrices with
  288. * unknown condition numbers.
  289. *
  290. IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
  291. *
  292. * Generate a matrix with elements whose real and
  293. * imaginary parts are from [-1,1].
  294. *
  295. CALL ZLARNV( 2, ISEED, N+2*M, A )
  296. IF( ANORM.NE.ONE )
  297. $ CALL ZDSCAL( N+2*M, ANORM, A, 1 )
  298. ELSE IF( IZERO.GT.0 ) THEN
  299. *
  300. * Reuse the last matrix by copying back the zeroed out
  301. * elements.
  302. *
  303. IF( IZERO.EQ.1 ) THEN
  304. A( N ) = Z( 2 )
  305. IF( N.GT.1 )
  306. $ A( 1 ) = Z( 3 )
  307. ELSE IF( IZERO.EQ.N ) THEN
  308. A( 3*N-2 ) = Z( 1 )
  309. A( 2*N-1 ) = Z( 2 )
  310. ELSE
  311. A( 2*N-2+IZERO ) = Z( 1 )
  312. A( N-1+IZERO ) = Z( 2 )
  313. A( IZERO ) = Z( 3 )
  314. END IF
  315. END IF
  316. *
  317. * If IMAT > 7, set one column of the matrix to 0.
  318. *
  319. IF( .NOT.ZEROT ) THEN
  320. IZERO = 0
  321. ELSE IF( IMAT.EQ.8 ) THEN
  322. IZERO = 1
  323. Z( 2 ) = A( N )
  324. A( N ) = ZERO
  325. IF( N.GT.1 ) THEN
  326. Z( 3 ) = A( 1 )
  327. A( 1 ) = ZERO
  328. END IF
  329. ELSE IF( IMAT.EQ.9 ) THEN
  330. IZERO = N
  331. Z( 1 ) = A( 3*N-2 )
  332. Z( 2 ) = A( 2*N-1 )
  333. A( 3*N-2 ) = ZERO
  334. A( 2*N-1 ) = ZERO
  335. ELSE
  336. IZERO = ( N+1 ) / 2
  337. DO 20 I = IZERO, N - 1
  338. A( 2*N-2+I ) = ZERO
  339. A( N-1+I ) = ZERO
  340. A( I ) = ZERO
  341. 20 CONTINUE
  342. A( 3*N-2 ) = ZERO
  343. A( 2*N-1 ) = ZERO
  344. END IF
  345. END IF
  346. *
  347. *+ TEST 1
  348. * Factor A as L*U and compute the ratio
  349. * norm(L*U - A) / (n * norm(A) * EPS )
  350. *
  351. CALL ZCOPY( N+2*M, A, 1, AF, 1 )
  352. SRNAMT = 'ZGTTRF'
  353. CALL ZGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
  354. $ IWORK, INFO )
  355. *
  356. * Check error code from ZGTTRF.
  357. *
  358. IF( INFO.NE.IZERO )
  359. $ CALL ALAERH( PATH, 'ZGTTRF', INFO, IZERO, ' ', N, N, 1,
  360. $ 1, -1, IMAT, NFAIL, NERRS, NOUT )
  361. TRFCON = INFO.NE.0
  362. *
  363. CALL ZGTT01( N, A, A( M+1 ), A( N+M+1 ), AF, AF( M+1 ),
  364. $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, WORK, LDA,
  365. $ RWORK, RESULT( 1 ) )
  366. *
  367. * Print the test ratio if it is .GE. THRESH.
  368. *
  369. IF( RESULT( 1 ).GE.THRESH ) THEN
  370. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  371. $ CALL ALAHD( NOUT, PATH )
  372. WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 )
  373. NFAIL = NFAIL + 1
  374. END IF
  375. NRUN = NRUN + 1
  376. *
  377. DO 50 ITRAN = 1, 2
  378. TRANS = TRANSS( ITRAN )
  379. IF( ITRAN.EQ.1 ) THEN
  380. NORM = 'O'
  381. ELSE
  382. NORM = 'I'
  383. END IF
  384. ANORM = ZLANGT( NORM, N, A, A( M+1 ), A( N+M+1 ) )
  385. *
  386. IF( .NOT.TRFCON ) THEN
  387. *
  388. * Use ZGTTRS to solve for one column at a time of
  389. * inv(A), computing the maximum column sum as we go.
  390. *
  391. AINVNM = ZERO
  392. DO 40 I = 1, N
  393. DO 30 J = 1, N
  394. X( J ) = ZERO
  395. 30 CONTINUE
  396. X( I ) = ONE
  397. CALL ZGTTRS( TRANS, N, 1, AF, AF( M+1 ),
  398. $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
  399. $ LDA, INFO )
  400. AINVNM = MAX( AINVNM, DZASUM( N, X, 1 ) )
  401. 40 CONTINUE
  402. *
  403. * Compute RCONDC = 1 / (norm(A) * norm(inv(A))
  404. *
  405. IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  406. RCONDC = ONE
  407. ELSE
  408. RCONDC = ( ONE / ANORM ) / AINVNM
  409. END IF
  410. IF( ITRAN.EQ.1 ) THEN
  411. RCONDO = RCONDC
  412. ELSE
  413. RCONDI = RCONDC
  414. END IF
  415. ELSE
  416. RCONDC = ZERO
  417. END IF
  418. *
  419. *+ TEST 7
  420. * Estimate the reciprocal of the condition number of the
  421. * matrix.
  422. *
  423. SRNAMT = 'ZGTCON'
  424. CALL ZGTCON( NORM, N, AF, AF( M+1 ), AF( N+M+1 ),
  425. $ AF( N+2*M+1 ), IWORK, ANORM, RCOND, WORK,
  426. $ INFO )
  427. *
  428. * Check error code from ZGTCON.
  429. *
  430. IF( INFO.NE.0 )
  431. $ CALL ALAERH( PATH, 'ZGTCON', INFO, 0, NORM, N, N, -1,
  432. $ -1, -1, IMAT, NFAIL, NERRS, NOUT )
  433. *
  434. RESULT( 7 ) = DGET06( RCOND, RCONDC )
  435. *
  436. * Print the test ratio if it is .GE. THRESH.
  437. *
  438. IF( RESULT( 7 ).GE.THRESH ) THEN
  439. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  440. $ CALL ALAHD( NOUT, PATH )
  441. WRITE( NOUT, FMT = 9997 )NORM, N, IMAT, 7,
  442. $ RESULT( 7 )
  443. NFAIL = NFAIL + 1
  444. END IF
  445. NRUN = NRUN + 1
  446. 50 CONTINUE
  447. *
  448. * Skip the remaining tests if the matrix is singular.
  449. *
  450. IF( TRFCON )
  451. $ GO TO 100
  452. *
  453. DO 90 IRHS = 1, NNS
  454. NRHS = NSVAL( IRHS )
  455. *
  456. * Generate NRHS random solution vectors.
  457. *
  458. IX = 1
  459. DO 60 J = 1, NRHS
  460. CALL ZLARNV( 2, ISEED, N, XACT( IX ) )
  461. IX = IX + LDA
  462. 60 CONTINUE
  463. *
  464. DO 80 ITRAN = 1, 3
  465. TRANS = TRANSS( ITRAN )
  466. IF( ITRAN.EQ.1 ) THEN
  467. RCONDC = RCONDO
  468. ELSE
  469. RCONDC = RCONDI
  470. END IF
  471. *
  472. * Set the right hand side.
  473. *
  474. CALL ZLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
  475. $ A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
  476. *
  477. *+ TEST 2
  478. * Solve op(A) * X = B and compute the residual.
  479. *
  480. CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
  481. SRNAMT = 'ZGTTRS'
  482. CALL ZGTTRS( TRANS, N, NRHS, AF, AF( M+1 ),
  483. $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
  484. $ LDA, INFO )
  485. *
  486. * Check error code from ZGTTRS.
  487. *
  488. IF( INFO.NE.0 )
  489. $ CALL ALAERH( PATH, 'ZGTTRS', INFO, 0, TRANS, N, N,
  490. $ -1, -1, NRHS, IMAT, NFAIL, NERRS,
  491. $ NOUT )
  492. *
  493. CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
  494. CALL ZGTT02( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
  495. $ X, LDA, WORK, LDA, RESULT( 2 ) )
  496. *
  497. *+ TEST 3
  498. * Check solution from generated exact solution.
  499. *
  500. CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
  501. $ RESULT( 3 ) )
  502. *
  503. *+ TESTS 4, 5, and 6
  504. * Use iterative refinement to improve the solution.
  505. *
  506. SRNAMT = 'ZGTRFS'
  507. CALL ZGTRFS( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
  508. $ AF, AF( M+1 ), AF( N+M+1 ),
  509. $ AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
  510. $ RWORK, RWORK( NRHS+1 ), WORK,
  511. $ RWORK( 2*NRHS+1 ), INFO )
  512. *
  513. * Check error code from ZGTRFS.
  514. *
  515. IF( INFO.NE.0 )
  516. $ CALL ALAERH( PATH, 'ZGTRFS', INFO, 0, TRANS, N, N,
  517. $ -1, -1, NRHS, IMAT, NFAIL, NERRS,
  518. $ NOUT )
  519. *
  520. CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
  521. $ RESULT( 4 ) )
  522. CALL ZGTT05( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
  523. $ B, LDA, X, LDA, XACT, LDA, RWORK,
  524. $ RWORK( NRHS+1 ), RESULT( 5 ) )
  525. *
  526. * Print information about the tests that did not pass the
  527. * threshold.
  528. *
  529. DO 70 K = 2, 6
  530. IF( RESULT( K ).GE.THRESH ) THEN
  531. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  532. $ CALL ALAHD( NOUT, PATH )
  533. WRITE( NOUT, FMT = 9998 )TRANS, N, NRHS, IMAT,
  534. $ K, RESULT( K )
  535. NFAIL = NFAIL + 1
  536. END IF
  537. 70 CONTINUE
  538. NRUN = NRUN + 5
  539. 80 CONTINUE
  540. 90 CONTINUE
  541. 100 CONTINUE
  542. 110 CONTINUE
  543. *
  544. * Print a summary of the results.
  545. *
  546. CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
  547. *
  548. 9999 FORMAT( 12X, 'N =', I5, ',', 10X, ' type ', I2, ', test(', I2,
  549. $ ') = ', G12.5 )
  550. 9998 FORMAT( ' TRANS=''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
  551. $ I2, ', test(', I2, ') = ', G12.5 )
  552. 9997 FORMAT( ' NORM =''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
  553. $ ', test(', I2, ') = ', G12.5 )
  554. RETURN
  555. *
  556. * End of ZCHKGT
  557. *
  558. END