You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlavsy_rook.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. *> \brief \b DLAVSY_ROOK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DLAVSY_ROOK( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
  12. * LDB, INFO )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER DIAG, TRANS, UPLO
  16. * INTEGER INFO, LDA, LDB, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * DOUBLE PRECISION A( LDA, * ), B( LDB, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> DLAVSY_ROOK performs one of the matrix-vector operations
  30. *> x := A*x or x := A'*x,
  31. *> where x is an N element vector and A is one of the factors
  32. *> from the block U*D*U' or L*D*L' factorization computed by DSYTRF_ROOK.
  33. *>
  34. *> If TRANS = 'N', multiplies by U or U * D (or L or L * D)
  35. *> If TRANS = 'T', multiplies by U' or D * U' (or L' or D * L')
  36. *> If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L')
  37. *> \endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. *> \param[in] UPLO
  43. *> \verbatim
  44. *> UPLO is CHARACTER*1
  45. *> Specifies whether the factor stored in A is upper or lower
  46. *> triangular.
  47. *> = 'U': Upper triangular
  48. *> = 'L': Lower triangular
  49. *> \endverbatim
  50. *>
  51. *> \param[in] TRANS
  52. *> \verbatim
  53. *> TRANS is CHARACTER*1
  54. *> Specifies the operation to be performed:
  55. *> = 'N': x := A*x
  56. *> = 'T': x := A'*x
  57. *> = 'C': x := A'*x
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIAG
  61. *> \verbatim
  62. *> DIAG is CHARACTER*1
  63. *> Specifies whether or not the diagonal blocks are unit
  64. *> matrices. If the diagonal blocks are assumed to be unit,
  65. *> then A = U or A = L, otherwise A = U*D or A = L*D.
  66. *> = 'U': Diagonal blocks are assumed to be unit matrices.
  67. *> = 'N': Diagonal blocks are assumed to be non-unit matrices.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] N
  71. *> \verbatim
  72. *> N is INTEGER
  73. *> The number of rows and columns of the matrix A. N >= 0.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] NRHS
  77. *> \verbatim
  78. *> NRHS is INTEGER
  79. *> The number of right hand sides, i.e., the number of vectors
  80. *> x to be multiplied by A. NRHS >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] A
  84. *> \verbatim
  85. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  86. *> The block diagonal matrix D and the multipliers used to
  87. *> obtain the factor U or L as computed by DSYTRF_ROOK.
  88. *> Stored as a 2-D triangular matrix.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] LDA
  92. *> \verbatim
  93. *> LDA is INTEGER
  94. *> The leading dimension of the array A. LDA >= max(1,N).
  95. *> \endverbatim
  96. *>
  97. *> \param[in] IPIV
  98. *> \verbatim
  99. *> IPIV is INTEGER array, dimension (N)
  100. *> Details of the interchanges and the block structure of D,
  101. *> as determined by DSYTRF_ROOK.
  102. *>
  103. *> If UPLO = 'U':
  104. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  105. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  106. *> (If IPIV( k ) = k, no interchange was done).
  107. *>
  108. *> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  109. *> columns k and -IPIV(k) were interchanged and rows and
  110. *> columns k-1 and -IPIV(k-1) were inerchaged,
  111. *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  112. *>
  113. *> If UPLO = 'L':
  114. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  115. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  116. *> (If IPIV( k ) = k, no interchange was done).
  117. *>
  118. *> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  119. *> columns k and -IPIV(k) were interchanged and rows and
  120. *> columns k+1 and -IPIV(k+1) were inerchaged,
  121. *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  122. *> \endverbatim
  123. *>
  124. *> \param[in,out] B
  125. *> \verbatim
  126. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  127. *> On entry, B contains NRHS vectors of length N.
  128. *> On exit, B is overwritten with the product A * B.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] LDB
  132. *> \verbatim
  133. *> LDB is INTEGER
  134. *> The leading dimension of the array B. LDB >= max(1,N).
  135. *> \endverbatim
  136. *>
  137. *> \param[out] INFO
  138. *> \verbatim
  139. *> INFO is INTEGER
  140. *> = 0: successful exit
  141. *> < 0: if INFO = -k, the k-th argument had an illegal value
  142. *> \endverbatim
  143. *
  144. * Authors:
  145. * ========
  146. *
  147. *> \author Univ. of Tennessee
  148. *> \author Univ. of California Berkeley
  149. *> \author Univ. of Colorado Denver
  150. *> \author NAG Ltd.
  151. *
  152. *> \date November 2013
  153. *
  154. *> \ingroup double_lin
  155. *
  156. * =====================================================================
  157. SUBROUTINE DLAVSY_ROOK( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV,
  158. $ B, LDB, INFO )
  159. *
  160. * -- LAPACK test routine (version 3.5.0) --
  161. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  162. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163. * November 2013
  164. *
  165. * .. Scalar Arguments ..
  166. CHARACTER DIAG, TRANS, UPLO
  167. INTEGER INFO, LDA, LDB, N, NRHS
  168. * ..
  169. * .. Array Arguments ..
  170. INTEGER IPIV( * )
  171. DOUBLE PRECISION A( LDA, * ), B( LDB, * )
  172. * ..
  173. *
  174. * =====================================================================
  175. *
  176. * .. Parameters ..
  177. DOUBLE PRECISION ONE
  178. PARAMETER ( ONE = 1.0D+0 )
  179. * ..
  180. * .. Local Scalars ..
  181. LOGICAL NOUNIT
  182. INTEGER J, K, KP
  183. DOUBLE PRECISION D11, D12, D21, D22, T1, T2
  184. * ..
  185. * .. External Functions ..
  186. LOGICAL LSAME
  187. EXTERNAL LSAME
  188. * ..
  189. * .. External Subroutines ..
  190. EXTERNAL DGEMV, DGER, DSCAL, DSWAP, XERBLA
  191. * ..
  192. * .. Intrinsic Functions ..
  193. INTRINSIC ABS, MAX
  194. * ..
  195. * .. Executable Statements ..
  196. *
  197. * Test the input parameters.
  198. *
  199. INFO = 0
  200. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  201. INFO = -1
  202. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
  203. $ LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  204. INFO = -2
  205. ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
  206. $ THEN
  207. INFO = -3
  208. ELSE IF( N.LT.0 ) THEN
  209. INFO = -4
  210. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  211. INFO = -6
  212. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  213. INFO = -9
  214. END IF
  215. IF( INFO.NE.0 ) THEN
  216. CALL XERBLA( 'DLAVSY_ROOK ', -INFO )
  217. RETURN
  218. END IF
  219. *
  220. * Quick return if possible.
  221. *
  222. IF( N.EQ.0 )
  223. $ RETURN
  224. *
  225. NOUNIT = LSAME( DIAG, 'N' )
  226. *------------------------------------------
  227. *
  228. * Compute B := A * B (No transpose)
  229. *
  230. *------------------------------------------
  231. IF( LSAME( TRANS, 'N' ) ) THEN
  232. *
  233. * Compute B := U*B
  234. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  235. *
  236. IF( LSAME( UPLO, 'U' ) ) THEN
  237. *
  238. * Loop forward applying the transformations.
  239. *
  240. K = 1
  241. 10 CONTINUE
  242. IF( K.GT.N )
  243. $ GO TO 30
  244. IF( IPIV( K ).GT.0 ) THEN
  245. *
  246. * 1 x 1 pivot block
  247. *
  248. * Multiply by the diagonal element if forming U * D.
  249. *
  250. IF( NOUNIT )
  251. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  252. *
  253. * Multiply by P(K) * inv(U(K)) if K > 1.
  254. *
  255. IF( K.GT.1 ) THEN
  256. *
  257. * Apply the transformation.
  258. *
  259. CALL DGER( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
  260. $ LDB, B( 1, 1 ), LDB )
  261. *
  262. * Interchange if P(K) .ne. I.
  263. *
  264. KP = IPIV( K )
  265. IF( KP.NE.K )
  266. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  267. END IF
  268. K = K + 1
  269. ELSE
  270. *
  271. * 2 x 2 pivot block
  272. *
  273. * Multiply by the diagonal block if forming U * D.
  274. *
  275. IF( NOUNIT ) THEN
  276. D11 = A( K, K )
  277. D22 = A( K+1, K+1 )
  278. D12 = A( K, K+1 )
  279. D21 = D12
  280. DO 20 J = 1, NRHS
  281. T1 = B( K, J )
  282. T2 = B( K+1, J )
  283. B( K, J ) = D11*T1 + D12*T2
  284. B( K+1, J ) = D21*T1 + D22*T2
  285. 20 CONTINUE
  286. END IF
  287. *
  288. * Multiply by P(K) * inv(U(K)) if K > 1.
  289. *
  290. IF( K.GT.1 ) THEN
  291. *
  292. * Apply the transformations.
  293. *
  294. CALL DGER( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
  295. $ LDB, B( 1, 1 ), LDB )
  296. CALL DGER( K-1, NRHS, ONE, A( 1, K+1 ), 1,
  297. $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
  298. *
  299. * Interchange if a permutation was applied at the
  300. * K-th step of the factorization.
  301. *
  302. * Swap the first of pair with IMAXth
  303. *
  304. KP = ABS( IPIV( K ) )
  305. IF( KP.NE.K )
  306. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  307. *
  308. * NOW swap the first of pair with Pth
  309. *
  310. KP = ABS( IPIV( K+1 ) )
  311. IF( KP.NE.K+1 )
  312. $ CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  313. $ LDB )
  314. END IF
  315. K = K + 2
  316. END IF
  317. GO TO 10
  318. 30 CONTINUE
  319. *
  320. * Compute B := L*B
  321. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
  322. *
  323. ELSE
  324. *
  325. * Loop backward applying the transformations to B.
  326. *
  327. K = N
  328. 40 CONTINUE
  329. IF( K.LT.1 )
  330. $ GO TO 60
  331. *
  332. * Test the pivot index. If greater than zero, a 1 x 1
  333. * pivot was used, otherwise a 2 x 2 pivot was used.
  334. *
  335. IF( IPIV( K ).GT.0 ) THEN
  336. *
  337. * 1 x 1 pivot block:
  338. *
  339. * Multiply by the diagonal element if forming L * D.
  340. *
  341. IF( NOUNIT )
  342. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  343. *
  344. * Multiply by P(K) * inv(L(K)) if K < N.
  345. *
  346. IF( K.NE.N ) THEN
  347. KP = IPIV( K )
  348. *
  349. * Apply the transformation.
  350. *
  351. CALL DGER( N-K, NRHS, ONE, A( K+1, K ), 1, B( K, 1 ),
  352. $ LDB, B( K+1, 1 ), LDB )
  353. *
  354. * Interchange if a permutation was applied at the
  355. * K-th step of the factorization.
  356. *
  357. IF( KP.NE.K )
  358. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  359. END IF
  360. K = K - 1
  361. *
  362. ELSE
  363. *
  364. * 2 x 2 pivot block:
  365. *
  366. * Multiply by the diagonal block if forming L * D.
  367. *
  368. IF( NOUNIT ) THEN
  369. D11 = A( K-1, K-1 )
  370. D22 = A( K, K )
  371. D21 = A( K, K-1 )
  372. D12 = D21
  373. DO 50 J = 1, NRHS
  374. T1 = B( K-1, J )
  375. T2 = B( K, J )
  376. B( K-1, J ) = D11*T1 + D12*T2
  377. B( K, J ) = D21*T1 + D22*T2
  378. 50 CONTINUE
  379. END IF
  380. *
  381. * Multiply by P(K) * inv(L(K)) if K < N.
  382. *
  383. IF( K.NE.N ) THEN
  384. *
  385. * Apply the transformation.
  386. *
  387. CALL DGER( N-K, NRHS, ONE, A( K+1, K ), 1, B( K, 1 ),
  388. $ LDB, B( K+1, 1 ), LDB )
  389. CALL DGER( N-K, NRHS, ONE, A( K+1, K-1 ), 1,
  390. $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
  391. *
  392. * Interchange if a permutation was applied at the
  393. * K-th step of the factorization.
  394. *
  395. * Swap the second of pair with IMAXth
  396. *
  397. KP = ABS( IPIV( K ) )
  398. IF( KP.NE.K )
  399. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  400. *
  401. * NOW swap the first of pair with Pth
  402. *
  403. KP = ABS( IPIV( K-1 ) )
  404. IF( KP.NE.K-1 )
  405. $ CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  406. $ LDB )
  407. END IF
  408. K = K - 2
  409. END IF
  410. GO TO 40
  411. 60 CONTINUE
  412. END IF
  413. *----------------------------------------
  414. *
  415. * Compute B := A' * B (transpose)
  416. *
  417. *----------------------------------------
  418. ELSE
  419. *
  420. * Form B := U'*B
  421. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  422. * and U' = inv(U'(1))*P(1)* ... *inv(U'(m))*P(m)
  423. *
  424. IF( LSAME( UPLO, 'U' ) ) THEN
  425. *
  426. * Loop backward applying the transformations.
  427. *
  428. K = N
  429. 70 CONTINUE
  430. IF( K.LT.1 )
  431. $ GO TO 90
  432. *
  433. * 1 x 1 pivot block.
  434. *
  435. IF( IPIV( K ).GT.0 ) THEN
  436. IF( K.GT.1 ) THEN
  437. *
  438. * Interchange if P(K) .ne. I.
  439. *
  440. KP = IPIV( K )
  441. IF( KP.NE.K )
  442. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  443. *
  444. * Apply the transformation
  445. *
  446. CALL DGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB,
  447. $ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  448. END IF
  449. IF( NOUNIT )
  450. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  451. K = K - 1
  452. *
  453. * 2 x 2 pivot block.
  454. *
  455. ELSE
  456. IF( K.GT.2 ) THEN
  457. *
  458. * Swap the second of pair with Pth
  459. *
  460. KP = ABS( IPIV( K ) )
  461. IF( KP.NE.K )
  462. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  463. *
  464. * Now swap the first of pair with IMAX(r)th
  465. *
  466. KP = ABS( IPIV( K-1 ) )
  467. IF( KP.NE.K-1 )
  468. $ CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  469. $ LDB )
  470. *
  471. * Apply the transformations
  472. *
  473. CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
  474. $ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  475. CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
  476. $ A( 1, K-1 ), 1, ONE, B( K-1, 1 ), LDB )
  477. END IF
  478. *
  479. * Multiply by the diagonal block if non-unit.
  480. *
  481. IF( NOUNIT ) THEN
  482. D11 = A( K-1, K-1 )
  483. D22 = A( K, K )
  484. D12 = A( K-1, K )
  485. D21 = D12
  486. DO 80 J = 1, NRHS
  487. T1 = B( K-1, J )
  488. T2 = B( K, J )
  489. B( K-1, J ) = D11*T1 + D12*T2
  490. B( K, J ) = D21*T1 + D22*T2
  491. 80 CONTINUE
  492. END IF
  493. K = K - 2
  494. END IF
  495. GO TO 70
  496. 90 CONTINUE
  497. *
  498. * Form B := L'*B
  499. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
  500. * and L' = inv(L'(m))*P(m)* ... *inv(L'(1))*P(1)
  501. *
  502. ELSE
  503. *
  504. * Loop forward applying the L-transformations.
  505. *
  506. K = 1
  507. 100 CONTINUE
  508. IF( K.GT.N )
  509. $ GO TO 120
  510. *
  511. * 1 x 1 pivot block
  512. *
  513. IF( IPIV( K ).GT.0 ) THEN
  514. IF( K.LT.N ) THEN
  515. *
  516. * Interchange if P(K) .ne. I.
  517. *
  518. KP = IPIV( K )
  519. IF( KP.NE.K )
  520. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  521. *
  522. * Apply the transformation
  523. *
  524. CALL DGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ),
  525. $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  526. END IF
  527. IF( NOUNIT )
  528. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  529. K = K + 1
  530. *
  531. * 2 x 2 pivot block.
  532. *
  533. ELSE
  534. IF( K.LT.N-1 ) THEN
  535. *
  536. * Swap the first of pair with Pth
  537. *
  538. KP = ABS( IPIV( K ) )
  539. IF( KP.NE.K )
  540. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  541. *
  542. * Now swap the second of pair with IMAX(r)th
  543. *
  544. KP = ABS( IPIV( K+1 ) )
  545. IF( KP.NE.K+1 )
  546. $ CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  547. $ LDB )
  548. *
  549. * Apply the transformation
  550. *
  551. CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
  552. $ B( K+2, 1 ), LDB, A( K+2, K+1 ), 1, ONE,
  553. $ B( K+1, 1 ), LDB )
  554. CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
  555. $ B( K+2, 1 ), LDB, A( K+2, K ), 1, ONE,
  556. $ B( K, 1 ), LDB )
  557. END IF
  558. *
  559. * Multiply by the diagonal block if non-unit.
  560. *
  561. IF( NOUNIT ) THEN
  562. D11 = A( K, K )
  563. D22 = A( K+1, K+1 )
  564. D21 = A( K+1, K )
  565. D12 = D21
  566. DO 110 J = 1, NRHS
  567. T1 = B( K, J )
  568. T2 = B( K+1, J )
  569. B( K, J ) = D11*T1 + D12*T2
  570. B( K+1, J ) = D21*T1 + D22*T2
  571. 110 CONTINUE
  572. END IF
  573. K = K + 2
  574. END IF
  575. GO TO 100
  576. 120 CONTINUE
  577. END IF
  578. *
  579. END IF
  580. RETURN
  581. *
  582. * End of DLAVSY_ROOK
  583. *
  584. END