You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaptm.f 5.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. *> \brief \b DLAPTM
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DLAPTM( N, NRHS, ALPHA, D, E, X, LDX, BETA, B, LDB )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER LDB, LDX, N, NRHS
  15. * DOUBLE PRECISION ALPHA, BETA
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), X( LDX, * )
  19. * ..
  20. *
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> DLAPTM multiplies an N by NRHS matrix X by a symmetric tridiagonal
  28. *> matrix A and stores the result in a matrix B. The operation has the
  29. *> form
  30. *>
  31. *> B := alpha * A * X + beta * B
  32. *>
  33. *> where alpha may be either 1. or -1. and beta may be 0., 1., or -1.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] N
  40. *> \verbatim
  41. *> N is INTEGER
  42. *> The order of the matrix A. N >= 0.
  43. *> \endverbatim
  44. *>
  45. *> \param[in] NRHS
  46. *> \verbatim
  47. *> NRHS is INTEGER
  48. *> The number of right hand sides, i.e., the number of columns
  49. *> of the matrices X and B.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] ALPHA
  53. *> \verbatim
  54. *> ALPHA is DOUBLE PRECISION
  55. *> The scalar alpha. ALPHA must be 1. or -1.; otherwise,
  56. *> it is assumed to be 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] D
  60. *> \verbatim
  61. *> D is DOUBLE PRECISION array, dimension (N)
  62. *> The n diagonal elements of the tridiagonal matrix A.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] E
  66. *> \verbatim
  67. *> E is DOUBLE PRECISION array, dimension (N-1)
  68. *> The (n-1) subdiagonal or superdiagonal elements of A.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] X
  72. *> \verbatim
  73. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  74. *> The N by NRHS matrix X.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDX
  78. *> \verbatim
  79. *> LDX is INTEGER
  80. *> The leading dimension of the array X. LDX >= max(N,1).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] BETA
  84. *> \verbatim
  85. *> BETA is DOUBLE PRECISION
  86. *> The scalar beta. BETA must be 0., 1., or -1.; otherwise,
  87. *> it is assumed to be 1.
  88. *> \endverbatim
  89. *>
  90. *> \param[in,out] B
  91. *> \verbatim
  92. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  93. *> On entry, the N by NRHS matrix B.
  94. *> On exit, B is overwritten by the matrix expression
  95. *> B := alpha * A * X + beta * B.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] LDB
  99. *> \verbatim
  100. *> LDB is INTEGER
  101. *> The leading dimension of the array B. LDB >= max(N,1).
  102. *> \endverbatim
  103. *
  104. * Authors:
  105. * ========
  106. *
  107. *> \author Univ. of Tennessee
  108. *> \author Univ. of California Berkeley
  109. *> \author Univ. of Colorado Denver
  110. *> \author NAG Ltd.
  111. *
  112. *> \date December 2016
  113. *
  114. *> \ingroup double_lin
  115. *
  116. * =====================================================================
  117. SUBROUTINE DLAPTM( N, NRHS, ALPHA, D, E, X, LDX, BETA, B, LDB )
  118. *
  119. * -- LAPACK test routine (version 3.7.0) --
  120. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  121. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  122. * December 2016
  123. *
  124. * .. Scalar Arguments ..
  125. INTEGER LDB, LDX, N, NRHS
  126. DOUBLE PRECISION ALPHA, BETA
  127. * ..
  128. * .. Array Arguments ..
  129. DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), X( LDX, * )
  130. * ..
  131. *
  132. * =====================================================================
  133. *
  134. * .. Parameters ..
  135. DOUBLE PRECISION ONE, ZERO
  136. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  137. * ..
  138. * .. Local Scalars ..
  139. INTEGER I, J
  140. * ..
  141. * .. Executable Statements ..
  142. *
  143. IF( N.EQ.0 )
  144. $ RETURN
  145. *
  146. * Multiply B by BETA if BETA.NE.1.
  147. *
  148. IF( BETA.EQ.ZERO ) THEN
  149. DO 20 J = 1, NRHS
  150. DO 10 I = 1, N
  151. B( I, J ) = ZERO
  152. 10 CONTINUE
  153. 20 CONTINUE
  154. ELSE IF( BETA.EQ.-ONE ) THEN
  155. DO 40 J = 1, NRHS
  156. DO 30 I = 1, N
  157. B( I, J ) = -B( I, J )
  158. 30 CONTINUE
  159. 40 CONTINUE
  160. END IF
  161. *
  162. IF( ALPHA.EQ.ONE ) THEN
  163. *
  164. * Compute B := B + A*X
  165. *
  166. DO 60 J = 1, NRHS
  167. IF( N.EQ.1 ) THEN
  168. B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
  169. ELSE
  170. B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
  171. $ E( 1 )*X( 2, J )
  172. B( N, J ) = B( N, J ) + E( N-1 )*X( N-1, J ) +
  173. $ D( N )*X( N, J )
  174. DO 50 I = 2, N - 1
  175. B( I, J ) = B( I, J ) + E( I-1 )*X( I-1, J ) +
  176. $ D( I )*X( I, J ) + E( I )*X( I+1, J )
  177. 50 CONTINUE
  178. END IF
  179. 60 CONTINUE
  180. ELSE IF( ALPHA.EQ.-ONE ) THEN
  181. *
  182. * Compute B := B - A*X
  183. *
  184. DO 80 J = 1, NRHS
  185. IF( N.EQ.1 ) THEN
  186. B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
  187. ELSE
  188. B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
  189. $ E( 1 )*X( 2, J )
  190. B( N, J ) = B( N, J ) - E( N-1 )*X( N-1, J ) -
  191. $ D( N )*X( N, J )
  192. DO 70 I = 2, N - 1
  193. B( I, J ) = B( I, J ) - E( I-1 )*X( I-1, J ) -
  194. $ D( I )*X( I, J ) - E( I )*X( I+1, J )
  195. 70 CONTINUE
  196. END IF
  197. 80 CONTINUE
  198. END IF
  199. RETURN
  200. *
  201. * End of DLAPTM
  202. *
  203. END