You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

debchvxx.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. *> \brief \b DEBCHVXX
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DEBCHVXX( THRESH, PATH )
  12. *
  13. * .. Scalar Arguments ..
  14. * DOUBLE PRECISION THRESH
  15. * CHARACTER*3 PATH
  16. * ..
  17. *
  18. *
  19. *> \par Purpose:
  20. * =============
  21. *>
  22. *> \verbatim
  23. *>
  24. *> DEBCHVXX will run D**SVXX on a series of Hilbert matrices and then
  25. *> compare the error bounds returned by D**SVXX to see if the returned
  26. *> answer indeed falls within those bounds.
  27. *>
  28. *> Eight test ratios will be computed. The tests will pass if they are .LT.
  29. *> THRESH. There are two cases that are determined by 1 / (SQRT( N ) * EPS).
  30. *> If that value is .LE. to the component wise reciprocal condition number,
  31. *> it uses the guaranteed case, other wise it uses the unguaranteed case.
  32. *>
  33. *> Test ratios:
  34. *> Let Xc be X_computed and Xt be X_truth.
  35. *> The norm used is the infinity norm.
  36. *>
  37. *> Let A be the guaranteed case and B be the unguaranteed case.
  38. *>
  39. *> 1. Normwise guaranteed forward error bound.
  40. *> A: norm ( abs( Xc - Xt ) / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ) and
  41. *> ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N),10) * EPS.
  42. *> If these conditions are met, the test ratio is set to be
  43. *> ERRBND( *, nwise_i, bnd_i ) / MAX(SQRT(N), 10). Otherwise it is 1/EPS.
  44. *> B: For this case, CGESVXX should just return 1. If it is less than
  45. *> one, treat it the same as in 1A. Otherwise it fails. (Set test
  46. *> ratio to ERRBND( *, nwise_i, bnd_i ) * THRESH?)
  47. *>
  48. *> 2. Componentwise guaranteed forward error bound.
  49. *> A: norm ( abs( Xc(j) - Xt(j) ) ) / norm (Xt(j)) .LE. ERRBND( *, cwise_i, bnd_i )
  50. *> for all j .AND. ERRBND( *, cwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS.
  51. *> If these conditions are met, the test ratio is set to be
  52. *> ERRBND( *, cwise_i, bnd_i ) / MAX(SQRT(N), 10). Otherwise it is 1/EPS.
  53. *> B: Same as normwise test ratio.
  54. *>
  55. *> 3. Backwards error.
  56. *> A: The test ratio is set to BERR/EPS.
  57. *> B: Same test ratio.
  58. *>
  59. *> 4. Reciprocal condition number.
  60. *> A: A condition number is computed with Xt and compared with the one
  61. *> returned from CGESVXX. Let RCONDc be the RCOND returned by D**SVXX
  62. *> and RCONDt be the RCOND from the truth value. Test ratio is set to
  63. *> MAX(RCONDc/RCONDt, RCONDt/RCONDc).
  64. *> B: Test ratio is set to 1 / (EPS * RCONDc).
  65. *>
  66. *> 5. Reciprocal normwise condition number.
  67. *> A: The test ratio is set to
  68. *> MAX(ERRBND( *, nwise_i, cond_i ) / NCOND, NCOND / ERRBND( *, nwise_i, cond_i )).
  69. *> B: Test ratio is set to 1 / (EPS * ERRBND( *, nwise_i, cond_i )).
  70. *>
  71. *> 6. Reciprocal componentwise condition number.
  72. *> A: Test ratio is set to
  73. *> MAX(ERRBND( *, cwise_i, cond_i ) / CCOND, CCOND / ERRBND( *, cwise_i, cond_i )).
  74. *> B: Test ratio is set to 1 / (EPS * ERRBND( *, cwise_i, cond_i )).
  75. *>
  76. *> .. Parameters ..
  77. *> NMAX is determined by the largest number in the inverse of the hilbert
  78. *> matrix. Precision is exhausted when the largest entry in it is greater
  79. *> than 2 to the power of the number of bits in the fraction of the data
  80. *> type used plus one, which is 24 for single precision.
  81. *> NMAX should be 6 for single and 11 for double.
  82. *> \endverbatim
  83. *
  84. * Authors:
  85. * ========
  86. *
  87. *> \author Univ. of Tennessee
  88. *> \author Univ. of California Berkeley
  89. *> \author Univ. of Colorado Denver
  90. *> \author NAG Ltd.
  91. *
  92. *> \date December 2016
  93. *
  94. *> \ingroup double_lin
  95. *
  96. * =====================================================================
  97. SUBROUTINE DEBCHVXX( THRESH, PATH )
  98. IMPLICIT NONE
  99. * .. Scalar Arguments ..
  100. DOUBLE PRECISION THRESH
  101. CHARACTER*3 PATH
  102. INTEGER NMAX, NPARAMS, NERRBND, NTESTS, KL, KU
  103. PARAMETER (NMAX = 10, NPARAMS = 2, NERRBND = 3,
  104. $ NTESTS = 6)
  105. * .. Local Scalars ..
  106. INTEGER N, NRHS, INFO, I ,J, k, NFAIL, LDA,
  107. $ N_AUX_TESTS, LDAB, LDAFB
  108. CHARACTER FACT, TRANS, UPLO, EQUED
  109. CHARACTER*2 C2
  110. CHARACTER(3) NGUAR, CGUAR
  111. LOGICAL printed_guide
  112. DOUBLE PRECISION NCOND, CCOND, M, NORMDIF, NORMT, RCOND,
  113. $ RNORM, RINORM, SUMR, SUMRI, EPS,
  114. $ BERR(NMAX), RPVGRW, ORCOND,
  115. $ CWISE_ERR, NWISE_ERR, CWISE_BND, NWISE_BND,
  116. $ CWISE_RCOND, NWISE_RCOND,
  117. $ CONDTHRESH, ERRTHRESH
  118. * .. Local Arrays ..
  119. DOUBLE PRECISION TSTRAT(NTESTS), RINV(NMAX), PARAMS(NPARAMS),
  120. $ S(NMAX),R(NMAX),C(NMAX), DIFF(NMAX, NMAX),
  121. $ ERRBND_N(NMAX*3), ERRBND_C(NMAX*3),
  122. $ A(NMAX,NMAX),INVHILB(NMAX,NMAX),X(NMAX,NMAX),
  123. $ AB( (NMAX-1)+(NMAX-1)+1, NMAX ),
  124. $ ABCOPY( (NMAX-1)+(NMAX-1)+1, NMAX ),
  125. $ AFB( 2*(NMAX-1)+(NMAX-1)+1, NMAX ),
  126. $ WORK(NMAX*3*5), AF(NMAX, NMAX),B(NMAX, NMAX),
  127. $ ACOPY(NMAX, NMAX)
  128. INTEGER IPIV(NMAX), IWORK(3*NMAX)
  129. * .. External Functions ..
  130. DOUBLE PRECISION DLAMCH
  131. * .. External Subroutines ..
  132. EXTERNAL DLAHILB, DGESVXX, DPOSVXX, DSYSVXX,
  133. $ DGBSVXX, DLACPY, LSAMEN
  134. LOGICAL LSAMEN
  135. * .. Intrinsic Functions ..
  136. INTRINSIC SQRT, MAX, ABS, DBLE
  137. * .. Parameters ..
  138. INTEGER NWISE_I, CWISE_I
  139. PARAMETER (NWISE_I = 1, CWISE_I = 1)
  140. INTEGER BND_I, COND_I
  141. PARAMETER (BND_I = 2, COND_I = 3)
  142. * Create the loop to test out the Hilbert matrices
  143. FACT = 'E'
  144. UPLO = 'U'
  145. TRANS = 'N'
  146. EQUED = 'N'
  147. EPS = DLAMCH('Epsilon')
  148. NFAIL = 0
  149. N_AUX_TESTS = 0
  150. LDA = NMAX
  151. LDAB = (NMAX-1)+(NMAX-1)+1
  152. LDAFB = 2*(NMAX-1)+(NMAX-1)+1
  153. C2 = PATH( 2: 3 )
  154. * Main loop to test the different Hilbert Matrices.
  155. printed_guide = .false.
  156. DO N = 1 , NMAX
  157. PARAMS(1) = -1
  158. PARAMS(2) = -1
  159. KL = N-1
  160. KU = N-1
  161. NRHS = n
  162. M = MAX(SQRT(DBLE(N)), 10.0D+0)
  163. * Generate the Hilbert matrix, its inverse, and the
  164. * right hand side, all scaled by the LCM(1,..,2N-1).
  165. CALL DLAHILB(N, N, A, LDA, INVHILB, LDA, B, LDA, WORK, INFO)
  166. * Copy A into ACOPY.
  167. CALL DLACPY('ALL', N, N, A, NMAX, ACOPY, NMAX)
  168. * Store A in band format for GB tests
  169. DO J = 1, N
  170. DO I = 1, KL+KU+1
  171. AB( I, J ) = 0.0D+0
  172. END DO
  173. END DO
  174. DO J = 1, N
  175. DO I = MAX( 1, J-KU ), MIN( N, J+KL )
  176. AB( KU+1+I-J, J ) = A( I, J )
  177. END DO
  178. END DO
  179. * Copy AB into ABCOPY.
  180. DO J = 1, N
  181. DO I = 1, KL+KU+1
  182. ABCOPY( I, J ) = 0.0D+0
  183. END DO
  184. END DO
  185. CALL DLACPY('ALL', KL+KU+1, N, AB, LDAB, ABCOPY, LDAB)
  186. * Call D**SVXX with default PARAMS and N_ERR_BND = 3.
  187. IF ( LSAMEN( 2, C2, 'SY' ) ) THEN
  188. CALL DSYSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
  189. $ IPIV, EQUED, S, B, LDA, X, LDA, ORCOND,
  190. $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
  191. $ PARAMS, WORK, IWORK, INFO)
  192. ELSE IF ( LSAMEN( 2, C2, 'PO' ) ) THEN
  193. CALL DPOSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
  194. $ EQUED, S, B, LDA, X, LDA, ORCOND,
  195. $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
  196. $ PARAMS, WORK, IWORK, INFO)
  197. ELSE IF ( LSAMEN( 2, C2, 'GB' ) ) THEN
  198. CALL DGBSVXX(FACT, TRANS, N, KL, KU, NRHS, ABCOPY,
  199. $ LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B,
  200. $ LDA, X, LDA, ORCOND, RPVGRW, BERR, NERRBND,
  201. $ ERRBND_N, ERRBND_C, NPARAMS, PARAMS, WORK, IWORK,
  202. $ INFO)
  203. ELSE
  204. CALL DGESVXX(FACT, TRANS, N, NRHS, ACOPY, LDA, AF, LDA,
  205. $ IPIV, EQUED, R, C, B, LDA, X, LDA, ORCOND,
  206. $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
  207. $ PARAMS, WORK, IWORK, INFO)
  208. END IF
  209. N_AUX_TESTS = N_AUX_TESTS + 1
  210. IF (ORCOND .LT. EPS) THEN
  211. ! Either factorization failed or the matrix is flagged, and 1 <=
  212. ! INFO <= N+1. We don't decide based on rcond anymore.
  213. ! IF (INFO .EQ. 0 .OR. INFO .GT. N+1) THEN
  214. ! NFAIL = NFAIL + 1
  215. ! WRITE (*, FMT=8000) N, INFO, ORCOND, RCOND
  216. ! END IF
  217. ELSE
  218. ! Either everything succeeded (INFO == 0) or some solution failed
  219. ! to converge (INFO > N+1).
  220. IF (INFO .GT. 0 .AND. INFO .LE. N+1) THEN
  221. NFAIL = NFAIL + 1
  222. WRITE (*, FMT=8000) C2, N, INFO, ORCOND, RCOND
  223. END IF
  224. END IF
  225. * Calculating the difference between D**SVXX's X and the true X.
  226. DO I = 1,N
  227. DO J =1,NRHS
  228. DIFF(I,J) = X(I,J) - INVHILB(I,J)
  229. END DO
  230. END DO
  231. * Calculating the RCOND
  232. RNORM = 0.0D+0
  233. RINORM = 0.0D+0
  234. IF ( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'SY' ) ) THEN
  235. DO I = 1, N
  236. SUMR = 0.0D+0
  237. SUMRI = 0.0D+0
  238. DO J = 1, N
  239. SUMR = SUMR + S(I) * ABS(A(I,J)) * S(J)
  240. SUMRI = SUMRI + ABS(INVHILB(I, J)) / (S(J) * S(I))
  241. END DO
  242. RNORM = MAX(RNORM,SUMR)
  243. RINORM = MAX(RINORM,SUMRI)
  244. END DO
  245. ELSE IF ( LSAMEN( 2, C2, 'GE' ) .OR. LSAMEN( 2, C2, 'GB' ) )
  246. $ THEN
  247. DO I = 1, N
  248. SUMR = 0.0D+0
  249. SUMRI = 0.0D+0
  250. DO J = 1, N
  251. SUMR = SUMR + R(I) * ABS(A(I,J)) * C(J)
  252. SUMRI = SUMRI + ABS(INVHILB(I, J)) / (R(J) * C(I))
  253. END DO
  254. RNORM = MAX(RNORM,SUMR)
  255. RINORM = MAX(RINORM,SUMRI)
  256. END DO
  257. END IF
  258. RNORM = RNORM / ABS(A(1, 1))
  259. RCOND = 1.0D+0/(RNORM * RINORM)
  260. * Calculating the R for normwise rcond.
  261. DO I = 1, N
  262. RINV(I) = 0.0D+0
  263. END DO
  264. DO J = 1, N
  265. DO I = 1, N
  266. RINV(I) = RINV(I) + ABS(A(I,J))
  267. END DO
  268. END DO
  269. * Calculating the Normwise rcond.
  270. RINORM = 0.0D+0
  271. DO I = 1, N
  272. SUMRI = 0.0D+0
  273. DO J = 1, N
  274. SUMRI = SUMRI + ABS(INVHILB(I,J) * RINV(J))
  275. END DO
  276. RINORM = MAX(RINORM, SUMRI)
  277. END DO
  278. ! invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
  279. ! by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
  280. NCOND = ABS(A(1,1)) / RINORM
  281. CONDTHRESH = M * EPS
  282. ERRTHRESH = M * EPS
  283. DO K = 1, NRHS
  284. NORMT = 0.0D+0
  285. NORMDIF = 0.0D+0
  286. CWISE_ERR = 0.0D+0
  287. DO I = 1, N
  288. NORMT = MAX(ABS(INVHILB(I, K)), NORMT)
  289. NORMDIF = MAX(ABS(X(I,K) - INVHILB(I,K)), NORMDIF)
  290. IF (INVHILB(I,K) .NE. 0.0D+0) THEN
  291. CWISE_ERR = MAX(ABS(X(I,K) - INVHILB(I,K))
  292. $ /ABS(INVHILB(I,K)), CWISE_ERR)
  293. ELSE IF (X(I, K) .NE. 0.0D+0) THEN
  294. CWISE_ERR = DLAMCH('OVERFLOW')
  295. END IF
  296. END DO
  297. IF (NORMT .NE. 0.0D+0) THEN
  298. NWISE_ERR = NORMDIF / NORMT
  299. ELSE IF (NORMDIF .NE. 0.0D+0) THEN
  300. NWISE_ERR = DLAMCH('OVERFLOW')
  301. ELSE
  302. NWISE_ERR = 0.0D+0
  303. ENDIF
  304. DO I = 1, N
  305. RINV(I) = 0.0D+0
  306. END DO
  307. DO J = 1, N
  308. DO I = 1, N
  309. RINV(I) = RINV(I) + ABS(A(I, J) * INVHILB(J, K))
  310. END DO
  311. END DO
  312. RINORM = 0.0D+0
  313. DO I = 1, N
  314. SUMRI = 0.0D+0
  315. DO J = 1, N
  316. SUMRI = SUMRI
  317. $ + ABS(INVHILB(I, J) * RINV(J) / INVHILB(I, K))
  318. END DO
  319. RINORM = MAX(RINORM, SUMRI)
  320. END DO
  321. ! invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
  322. ! by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
  323. CCOND = ABS(A(1,1))/RINORM
  324. ! Forward error bound tests
  325. NWISE_BND = ERRBND_N(K + (BND_I-1)*NRHS)
  326. CWISE_BND = ERRBND_C(K + (BND_I-1)*NRHS)
  327. NWISE_RCOND = ERRBND_N(K + (COND_I-1)*NRHS)
  328. CWISE_RCOND = ERRBND_C(K + (COND_I-1)*NRHS)
  329. ! write (*,*) 'nwise : ', n, k, ncond, nwise_rcond,
  330. ! $ condthresh, ncond.ge.condthresh
  331. ! write (*,*) 'nwise2: ', k, nwise_bnd, nwise_err, errthresh
  332. IF (NCOND .GE. CONDTHRESH) THEN
  333. NGUAR = 'YES'
  334. IF (NWISE_BND .GT. ERRTHRESH) THEN
  335. TSTRAT(1) = 1/(2.0D+0*EPS)
  336. ELSE
  337. IF (NWISE_BND .NE. 0.0D+0) THEN
  338. TSTRAT(1) = NWISE_ERR / NWISE_BND
  339. ELSE IF (NWISE_ERR .NE. 0.0D+0) THEN
  340. TSTRAT(1) = 1/(16.0*EPS)
  341. ELSE
  342. TSTRAT(1) = 0.0D+0
  343. END IF
  344. IF (TSTRAT(1) .GT. 1.0D+0) THEN
  345. TSTRAT(1) = 1/(4.0D+0*EPS)
  346. END IF
  347. END IF
  348. ELSE
  349. NGUAR = 'NO'
  350. IF (NWISE_BND .LT. 1.0D+0) THEN
  351. TSTRAT(1) = 1/(8.0D+0*EPS)
  352. ELSE
  353. TSTRAT(1) = 1.0D+0
  354. END IF
  355. END IF
  356. ! write (*,*) 'cwise : ', n, k, ccond, cwise_rcond,
  357. ! $ condthresh, ccond.ge.condthresh
  358. ! write (*,*) 'cwise2: ', k, cwise_bnd, cwise_err, errthresh
  359. IF (CCOND .GE. CONDTHRESH) THEN
  360. CGUAR = 'YES'
  361. IF (CWISE_BND .GT. ERRTHRESH) THEN
  362. TSTRAT(2) = 1/(2.0D+0*EPS)
  363. ELSE
  364. IF (CWISE_BND .NE. 0.0D+0) THEN
  365. TSTRAT(2) = CWISE_ERR / CWISE_BND
  366. ELSE IF (CWISE_ERR .NE. 0.0D+0) THEN
  367. TSTRAT(2) = 1/(16.0D+0*EPS)
  368. ELSE
  369. TSTRAT(2) = 0.0D+0
  370. END IF
  371. IF (TSTRAT(2) .GT. 1.0D+0) TSTRAT(2) = 1/(4.0D+0*EPS)
  372. END IF
  373. ELSE
  374. CGUAR = 'NO'
  375. IF (CWISE_BND .LT. 1.0D+0) THEN
  376. TSTRAT(2) = 1/(8.0D+0*EPS)
  377. ELSE
  378. TSTRAT(2) = 1.0D+0
  379. END IF
  380. END IF
  381. ! Backwards error test
  382. TSTRAT(3) = BERR(K)/EPS
  383. ! Condition number tests
  384. TSTRAT(4) = RCOND / ORCOND
  385. IF (RCOND .GE. CONDTHRESH .AND. TSTRAT(4) .LT. 1.0D+0)
  386. $ TSTRAT(4) = 1.0D+0 / TSTRAT(4)
  387. TSTRAT(5) = NCOND / NWISE_RCOND
  388. IF (NCOND .GE. CONDTHRESH .AND. TSTRAT(5) .LT. 1.0D+0)
  389. $ TSTRAT(5) = 1.0D+0 / TSTRAT(5)
  390. TSTRAT(6) = CCOND / NWISE_RCOND
  391. IF (CCOND .GE. CONDTHRESH .AND. TSTRAT(6) .LT. 1.0D+0)
  392. $ TSTRAT(6) = 1.0D+0 / TSTRAT(6)
  393. DO I = 1, NTESTS
  394. IF (TSTRAT(I) .GT. THRESH) THEN
  395. IF (.NOT.PRINTED_GUIDE) THEN
  396. WRITE(*,*)
  397. WRITE( *, 9996) 1
  398. WRITE( *, 9995) 2
  399. WRITE( *, 9994) 3
  400. WRITE( *, 9993) 4
  401. WRITE( *, 9992) 5
  402. WRITE( *, 9991) 6
  403. WRITE( *, 9990) 7
  404. WRITE( *, 9989) 8
  405. WRITE(*,*)
  406. PRINTED_GUIDE = .TRUE.
  407. END IF
  408. WRITE( *, 9999) C2, N, K, NGUAR, CGUAR, I, TSTRAT(I)
  409. NFAIL = NFAIL + 1
  410. END IF
  411. END DO
  412. END DO
  413. c$$$ WRITE(*,*)
  414. c$$$ WRITE(*,*) 'Normwise Error Bounds'
  415. c$$$ WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,nwise_i,bnd_i)
  416. c$$$ WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,nwise_i,cond_i)
  417. c$$$ WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,nwise_i,rawbnd_i)
  418. c$$$ WRITE(*,*)
  419. c$$$ WRITE(*,*) 'Componentwise Error Bounds'
  420. c$$$ WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,cwise_i,bnd_i)
  421. c$$$ WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,cwise_i,cond_i)
  422. c$$$ WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,cwise_i,rawbnd_i)
  423. c$$$ print *, 'Info: ', info
  424. c$$$ WRITE(*,*)
  425. * WRITE(*,*) 'TSTRAT: ',TSTRAT
  426. END DO
  427. WRITE(*,*)
  428. IF( NFAIL .GT. 0 ) THEN
  429. WRITE(*,9998) C2, NFAIL, NTESTS*N+N_AUX_TESTS
  430. ELSE
  431. WRITE(*,9997) C2
  432. END IF
  433. 9999 FORMAT( ' D', A2, 'SVXX: N =', I2, ', RHS = ', I2,
  434. $ ', NWISE GUAR. = ', A, ', CWISE GUAR. = ', A,
  435. $ ' test(',I1,') =', G12.5 )
  436. 9998 FORMAT( ' D', A2, 'SVXX: ', I6, ' out of ', I6,
  437. $ ' tests failed to pass the threshold' )
  438. 9997 FORMAT( ' D', A2, 'SVXX passed the tests of error bounds' )
  439. * Test ratios.
  440. 9996 FORMAT( 3X, I2, ': Normwise guaranteed forward error', / 5X,
  441. $ 'Guaranteed case: if norm ( abs( Xc - Xt )',
  442. $ ' / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ), then',
  443. $ / 5X,
  444. $ 'ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS')
  445. 9995 FORMAT( 3X, I2, ': Componentwise guaranteed forward error' )
  446. 9994 FORMAT( 3X, I2, ': Backwards error' )
  447. 9993 FORMAT( 3X, I2, ': Reciprocal condition number' )
  448. 9992 FORMAT( 3X, I2, ': Reciprocal normwise condition number' )
  449. 9991 FORMAT( 3X, I2, ': Raw normwise error estimate' )
  450. 9990 FORMAT( 3X, I2, ': Reciprocal componentwise condition number' )
  451. 9989 FORMAT( 3X, I2, ': Raw componentwise error estimate' )
  452. 8000 FORMAT( ' D', A2, 'SVXX: N =', I2, ', INFO = ', I3,
  453. $ ', ORCOND = ', G12.5, ', real RCOND = ', G12.5 )
  454. END