You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zuncsd2by1.f 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772
  1. *> \brief \b ZUNCSD2BY1
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZUNCSD2BY1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd2by1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd2by1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd2by1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  22. * X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  23. * LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  24. * INFO )
  25. *
  26. * .. Scalar Arguments ..
  27. * CHARACTER JOBU1, JOBU2, JOBV1T
  28. * INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  29. * $ M, P, Q
  30. * INTEGER LRWORK, LRWORKMIN, LRWORKOPT
  31. * ..
  32. * .. Array Arguments ..
  33. * DOUBLE PRECISION RWORK(*)
  34. * DOUBLE PRECISION THETA(*)
  35. * COMPLEX*16 U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  36. * $ X11(LDX11,*), X21(LDX21,*)
  37. * INTEGER IWORK(*)
  38. * ..
  39. *
  40. *
  41. *> \par Purpose:
  42. *> =============
  43. *>
  44. *>\verbatim
  45. *>
  46. *> ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
  47. *> orthonormal columns that has been partitioned into a 2-by-1 block
  48. *> structure:
  49. *>
  50. *> [ I1 0 0 ]
  51. *> [ 0 C 0 ]
  52. *> [ X11 ] [ U1 | ] [ 0 0 0 ]
  53. *> X = [-----] = [---------] [----------] V1**T .
  54. *> [ X21 ] [ | U2 ] [ 0 0 0 ]
  55. *> [ 0 S 0 ]
  56. *> [ 0 0 I2]
  57. *>
  58. *> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P,
  59. *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
  60. *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
  61. *> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
  62. *> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
  63. *> \endverbatim
  64. *
  65. * Arguments:
  66. * ==========
  67. *
  68. *> \param[in] JOBU1
  69. *> \verbatim
  70. *> JOBU1 is CHARACTER
  71. *> = 'Y': U1 is computed;
  72. *> otherwise: U1 is not computed.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] JOBU2
  76. *> \verbatim
  77. *> JOBU2 is CHARACTER
  78. *> = 'Y': U2 is computed;
  79. *> otherwise: U2 is not computed.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] JOBV1T
  83. *> \verbatim
  84. *> JOBV1T is CHARACTER
  85. *> = 'Y': V1T is computed;
  86. *> otherwise: V1T is not computed.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] M
  90. *> \verbatim
  91. *> M is INTEGER
  92. *> The number of rows in X.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] P
  96. *> \verbatim
  97. *> P is INTEGER
  98. *> The number of rows in X11. 0 <= P <= M.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] Q
  102. *> \verbatim
  103. *> Q is INTEGER
  104. *> The number of columns in X11 and X21. 0 <= Q <= M.
  105. *> \endverbatim
  106. *>
  107. *> \param[in,out] X11
  108. *> \verbatim
  109. *> X11 is COMPLEX*16 array, dimension (LDX11,Q)
  110. *> On entry, part of the unitary matrix whose CSD is desired.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDX11
  114. *> \verbatim
  115. *> LDX11 is INTEGER
  116. *> The leading dimension of X11. LDX11 >= MAX(1,P).
  117. *> \endverbatim
  118. *>
  119. *> \param[in,out] X21
  120. *> \verbatim
  121. *> X21 is COMPLEX*16 array, dimension (LDX21,Q)
  122. *> On entry, part of the unitary matrix whose CSD is desired.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDX21
  126. *> \verbatim
  127. *> LDX21 is INTEGER
  128. *> The leading dimension of X21. LDX21 >= MAX(1,M-P).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] THETA
  132. *> \verbatim
  133. *> THETA is DOUBLE PRECISION array, dimension (R), in which R =
  134. *> MIN(P,M-P,Q,M-Q).
  135. *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  136. *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  137. *> \endverbatim
  138. *>
  139. *> \param[out] U1
  140. *> \verbatim
  141. *> U1 is COMPLEX*16 array, dimension (P)
  142. *> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] LDU1
  146. *> \verbatim
  147. *> LDU1 is INTEGER
  148. *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  149. *> MAX(1,P).
  150. *> \endverbatim
  151. *>
  152. *> \param[out] U2
  153. *> \verbatim
  154. *> U2 is COMPLEX*16 array, dimension (M-P)
  155. *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  156. *> matrix U2.
  157. *> \endverbatim
  158. *>
  159. *> \param[in] LDU2
  160. *> \verbatim
  161. *> LDU2 is INTEGER
  162. *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  163. *> MAX(1,M-P).
  164. *> \endverbatim
  165. *>
  166. *> \param[out] V1T
  167. *> \verbatim
  168. *> V1T is COMPLEX*16 array, dimension (Q)
  169. *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  170. *> matrix V1**T.
  171. *> \endverbatim
  172. *>
  173. *> \param[in] LDV1T
  174. *> \verbatim
  175. *> LDV1T is INTEGER
  176. *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  177. *> MAX(1,Q).
  178. *> \endverbatim
  179. *>
  180. *> \param[out] WORK
  181. *> \verbatim
  182. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  183. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  184. *> \endverbatim
  185. *>
  186. *> \param[in] LWORK
  187. *> \verbatim
  188. *> LWORK is INTEGER
  189. *> The dimension of the array WORK.
  190. *>
  191. *> If LWORK = -1, then a workspace query is assumed; the routine
  192. *> only calculates the optimal size of the WORK array, returns
  193. *> this value as the first entry of the work array, and no error
  194. *> message related to LWORK is issued by XERBLA.
  195. *> \endverbatim
  196. *>
  197. *> \param[out] RWORK
  198. *> \verbatim
  199. *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  200. *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  201. *> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  202. *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  203. *> define the matrix in intermediate bidiagonal-block form
  204. *> remaining after nonconvergence. INFO specifies the number
  205. *> of nonzero PHI's.
  206. *> \endverbatim
  207. *>
  208. *> \param[in] LRWORK
  209. *> \verbatim
  210. *> LRWORK is INTEGER
  211. *> The dimension of the array RWORK.
  212. *>
  213. *> If LRWORK = -1, then a workspace query is assumed; the routine
  214. *> only calculates the optimal size of the RWORK array, returns
  215. *> this value as the first entry of the work array, and no error
  216. *> message related to LRWORK is issued by XERBLA.
  217. *> \endverbatim
  218. *
  219. *> \param[out] IWORK
  220. *> \verbatim
  221. *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  222. *> \endverbatim
  223. *>
  224. *> \param[out] INFO
  225. *> \verbatim
  226. *> INFO is INTEGER
  227. *> = 0: successful exit.
  228. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  229. *> > 0: ZBBCSD did not converge. See the description of WORK
  230. *> above for details.
  231. *> \endverbatim
  232. *
  233. *> \par References:
  234. * ================
  235. *>
  236. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  237. *> Algorithms, 50(1):33-65, 2009.
  238. *
  239. * Authors:
  240. * ========
  241. *
  242. *> \author Univ. of Tennessee
  243. *> \author Univ. of California Berkeley
  244. *> \author Univ. of Colorado Denver
  245. *> \author NAG Ltd.
  246. *
  247. *> \date July 2012
  248. *
  249. *> \ingroup complex16OTHERcomputational
  250. *
  251. * =====================================================================
  252. SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  253. $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  254. $ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  255. $ INFO )
  256. *
  257. * -- LAPACK computational routine (version 3.7.0) --
  258. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  259. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  260. * July 2012
  261. *
  262. * .. Scalar Arguments ..
  263. CHARACTER JOBU1, JOBU2, JOBV1T
  264. INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  265. $ M, P, Q
  266. INTEGER LRWORK, LRWORKMIN, LRWORKOPT
  267. * ..
  268. * .. Array Arguments ..
  269. DOUBLE PRECISION RWORK(*)
  270. DOUBLE PRECISION THETA(*)
  271. COMPLEX*16 U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  272. $ X11(LDX11,*), X21(LDX21,*)
  273. INTEGER IWORK(*)
  274. * ..
  275. *
  276. * =====================================================================
  277. *
  278. * .. Parameters ..
  279. COMPLEX*16 ONE, ZERO
  280. PARAMETER ( ONE = (1.0D0,0.0D0), ZERO = (0.0D0,0.0D0) )
  281. * ..
  282. * .. Local Scalars ..
  283. INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  284. $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  285. $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  286. $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  287. $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  288. $ LWORKMIN, LWORKOPT, R
  289. LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
  290. * ..
  291. * .. Local Arrays ..
  292. DOUBLE PRECISION DUM( 1 )
  293. COMPLEX*16 CDUM( 1, 1 )
  294. * ..
  295. * .. External Subroutines ..
  296. EXTERNAL ZBBCSD, ZCOPY, ZLACPY, ZLAPMR, ZLAPMT, ZUNBDB1,
  297. $ ZUNBDB2, ZUNBDB3, ZUNBDB4, ZUNGLQ, ZUNGQR,
  298. $ XERBLA
  299. * ..
  300. * .. External Functions ..
  301. LOGICAL LSAME
  302. EXTERNAL LSAME
  303. * ..
  304. * .. Intrinsic Function ..
  305. INTRINSIC INT, MAX, MIN
  306. * ..
  307. * .. Executable Statements ..
  308. *
  309. * Test input arguments
  310. *
  311. INFO = 0
  312. WANTU1 = LSAME( JOBU1, 'Y' )
  313. WANTU2 = LSAME( JOBU2, 'Y' )
  314. WANTV1T = LSAME( JOBV1T, 'Y' )
  315. LQUERY = LWORK .EQ. -1
  316. *
  317. IF( M .LT. 0 ) THEN
  318. INFO = -4
  319. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  320. INFO = -5
  321. ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  322. INFO = -6
  323. ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  324. INFO = -8
  325. ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  326. INFO = -10
  327. ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
  328. INFO = -13
  329. ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
  330. INFO = -15
  331. ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
  332. INFO = -17
  333. END IF
  334. *
  335. R = MIN( P, M-P, Q, M-Q )
  336. *
  337. * Compute workspace
  338. *
  339. * WORK layout:
  340. * |-----------------------------------------|
  341. * | LWORKOPT (1) |
  342. * |-----------------------------------------|
  343. * | TAUP1 (MAX(1,P)) |
  344. * | TAUP2 (MAX(1,M-P)) |
  345. * | TAUQ1 (MAX(1,Q)) |
  346. * |-----------------------------------------|
  347. * | ZUNBDB WORK | ZUNGQR WORK | ZUNGLQ WORK |
  348. * | | | |
  349. * | | | |
  350. * | | | |
  351. * | | | |
  352. * |-----------------------------------------|
  353. * RWORK layout:
  354. * |------------------|
  355. * | LRWORKOPT (1) |
  356. * |------------------|
  357. * | PHI (MAX(1,R-1)) |
  358. * |------------------|
  359. * | B11D (R) |
  360. * | B11E (R-1) |
  361. * | B12D (R) |
  362. * | B12E (R-1) |
  363. * | B21D (R) |
  364. * | B21E (R-1) |
  365. * | B22D (R) |
  366. * | B22E (R-1) |
  367. * | ZBBCSD RWORK |
  368. * |------------------|
  369. *
  370. IF( INFO .EQ. 0 ) THEN
  371. IPHI = 2
  372. IB11D = IPHI + MAX( 1, R-1 )
  373. IB11E = IB11D + MAX( 1, R )
  374. IB12D = IB11E + MAX( 1, R - 1 )
  375. IB12E = IB12D + MAX( 1, R )
  376. IB21D = IB12E + MAX( 1, R - 1 )
  377. IB21E = IB21D + MAX( 1, R )
  378. IB22D = IB21E + MAX( 1, R - 1 )
  379. IB22E = IB22D + MAX( 1, R )
  380. IBBCSD = IB22E + MAX( 1, R - 1 )
  381. ITAUP1 = 2
  382. ITAUP2 = ITAUP1 + MAX( 1, P )
  383. ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  384. IORBDB = ITAUQ1 + MAX( 1, Q )
  385. IORGQR = ITAUQ1 + MAX( 1, Q )
  386. IORGLQ = ITAUQ1 + MAX( 1, Q )
  387. LORGQRMIN = 1
  388. LORGQROPT = 1
  389. LORGLQMIN = 1
  390. LORGLQOPT = 1
  391. IF( R .EQ. Q ) THEN
  392. CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  393. $ CDUM, CDUM, CDUM, WORK, -1, CHILDINFO )
  394. LORBDB = INT( WORK(1) )
  395. IF( WANTU1 .AND. P .GT. 0 ) THEN
  396. CALL ZUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  397. $ CHILDINFO )
  398. LORGQRMIN = MAX( LORGQRMIN, P )
  399. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  400. ENDIF
  401. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  402. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  403. $ CHILDINFO )
  404. LORGQRMIN = MAX( LORGQRMIN, M-P )
  405. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  406. END IF
  407. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  408. CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
  409. $ CDUM, WORK(1), -1, CHILDINFO )
  410. LORGLQMIN = MAX( LORGLQMIN, Q-1 )
  411. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  412. END IF
  413. CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  414. $ DUM, U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM, 1,
  415. $ DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  416. $ RWORK(1), -1, CHILDINFO )
  417. LBBCSD = INT( RWORK(1) )
  418. ELSE IF( R .EQ. P ) THEN
  419. CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  420. $ CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  421. LORBDB = INT( WORK(1) )
  422. IF( WANTU1 .AND. P .GT. 0 ) THEN
  423. CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, CDUM, WORK(1),
  424. $ -1, CHILDINFO )
  425. LORGQRMIN = MAX( LORGQRMIN, P-1 )
  426. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  427. END IF
  428. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  429. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  430. $ CHILDINFO )
  431. LORGQRMIN = MAX( LORGQRMIN, M-P )
  432. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  433. END IF
  434. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  435. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  436. $ CHILDINFO )
  437. LORGLQMIN = MAX( LORGLQMIN, Q )
  438. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  439. END IF
  440. CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  441. $ DUM, V1T, LDV1T, CDUM, 1, U1, LDU1, U2, LDU2,
  442. $ DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  443. $ RWORK(1), -1, CHILDINFO )
  444. LBBCSD = INT( RWORK(1) )
  445. ELSE IF( R .EQ. M-P ) THEN
  446. CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  447. $ CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  448. LORBDB = INT( WORK(1) )
  449. IF( WANTU1 .AND. P .GT. 0 ) THEN
  450. CALL ZUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  451. $ CHILDINFO )
  452. LORGQRMIN = MAX( LORGQRMIN, P )
  453. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  454. END IF
  455. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  456. CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, CDUM,
  457. $ WORK(1), -1, CHILDINFO )
  458. LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
  459. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  460. END IF
  461. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  462. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  463. $ CHILDINFO )
  464. LORGLQMIN = MAX( LORGLQMIN, Q )
  465. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  466. END IF
  467. CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  468. $ THETA, DUM, CDUM, 1, V1T, LDV1T, U2, LDU2, U1,
  469. $ LDU1, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  470. $ RWORK(1), -1, CHILDINFO )
  471. LBBCSD = INT( RWORK(1) )
  472. ELSE
  473. CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  474. $ CDUM, CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO
  475. $ )
  476. LORBDB = M + INT( WORK(1) )
  477. IF( WANTU1 .AND. P .GT. 0 ) THEN
  478. CALL ZUNGQR( P, P, M-Q, U1, LDU1, CDUM, WORK(1), -1,
  479. $ CHILDINFO )
  480. LORGQRMIN = MAX( LORGQRMIN, P )
  481. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  482. END IF
  483. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  484. CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, CDUM, WORK(1), -1,
  485. $ CHILDINFO )
  486. LORGQRMIN = MAX( LORGQRMIN, M-P )
  487. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  488. END IF
  489. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  490. CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, CDUM, WORK(1), -1,
  491. $ CHILDINFO )
  492. LORGLQMIN = MAX( LORGLQMIN, Q )
  493. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  494. END IF
  495. CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  496. $ THETA, DUM, U2, LDU2, U1, LDU1, CDUM, 1, V1T,
  497. $ LDV1T, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  498. $ RWORK(1), -1, CHILDINFO )
  499. LBBCSD = INT( RWORK(1) )
  500. END IF
  501. LRWORKMIN = IBBCSD+LBBCSD-1
  502. LRWORKOPT = LRWORKMIN
  503. RWORK(1) = LRWORKOPT
  504. LWORKMIN = MAX( IORBDB+LORBDB-1,
  505. $ IORGQR+LORGQRMIN-1,
  506. $ IORGLQ+LORGLQMIN-1 )
  507. LWORKOPT = MAX( IORBDB+LORBDB-1,
  508. $ IORGQR+LORGQROPT-1,
  509. $ IORGLQ+LORGLQOPT-1 )
  510. WORK(1) = LWORKOPT
  511. IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  512. INFO = -19
  513. END IF
  514. END IF
  515. IF( INFO .NE. 0 ) THEN
  516. CALL XERBLA( 'ZUNCSD2BY1', -INFO )
  517. RETURN
  518. ELSE IF( LQUERY ) THEN
  519. RETURN
  520. END IF
  521. LORGQR = LWORK-IORGQR+1
  522. LORGLQ = LWORK-IORGLQ+1
  523. *
  524. * Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  525. * in which R = MIN(P,M-P,Q,M-Q)
  526. *
  527. IF( R .EQ. Q ) THEN
  528. *
  529. * Case 1: R = Q
  530. *
  531. * Simultaneously bidiagonalize X11 and X21
  532. *
  533. CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  534. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  535. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  536. *
  537. * Accumulate Householder reflectors
  538. *
  539. IF( WANTU1 .AND. P .GT. 0 ) THEN
  540. CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  541. CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  542. $ LORGQR, CHILDINFO )
  543. END IF
  544. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  545. CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  546. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  547. $ WORK(IORGQR), LORGQR, CHILDINFO )
  548. END IF
  549. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  550. V1T(1,1) = ONE
  551. DO J = 2, Q
  552. V1T(1,J) = ZERO
  553. V1T(J,1) = ZERO
  554. END DO
  555. CALL ZLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  556. $ LDV1T )
  557. CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  558. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  559. END IF
  560. *
  561. * Simultaneously diagonalize X11 and X21.
  562. *
  563. CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  564. $ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM,
  565. $ 1, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  566. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  567. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  568. $ CHILDINFO )
  569. *
  570. * Permute rows and columns to place zero submatrices in
  571. * preferred positions
  572. *
  573. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  574. DO I = 1, Q
  575. IWORK(I) = M - P - Q + I
  576. END DO
  577. DO I = Q + 1, M - P
  578. IWORK(I) = I - Q
  579. END DO
  580. CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  581. END IF
  582. ELSE IF( R .EQ. P ) THEN
  583. *
  584. * Case 2: R = P
  585. *
  586. * Simultaneously bidiagonalize X11 and X21
  587. *
  588. CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  589. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  590. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  591. *
  592. * Accumulate Householder reflectors
  593. *
  594. IF( WANTU1 .AND. P .GT. 0 ) THEN
  595. U1(1,1) = ONE
  596. DO J = 2, P
  597. U1(1,J) = ZERO
  598. U1(J,1) = ZERO
  599. END DO
  600. CALL ZLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  601. CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  602. $ WORK(IORGQR), LORGQR, CHILDINFO )
  603. END IF
  604. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  605. CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  606. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  607. $ WORK(IORGQR), LORGQR, CHILDINFO )
  608. END IF
  609. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  610. CALL ZLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  611. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  612. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  613. END IF
  614. *
  615. * Simultaneously diagonalize X11 and X21.
  616. *
  617. CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  618. $ RWORK(IPHI), V1T, LDV1T, CDUM, 1, U1, LDU1, U2,
  619. $ LDU2, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  620. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  621. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  622. $ CHILDINFO )
  623. *
  624. * Permute rows and columns to place identity submatrices in
  625. * preferred positions
  626. *
  627. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  628. DO I = 1, Q
  629. IWORK(I) = M - P - Q + I
  630. END DO
  631. DO I = Q + 1, M - P
  632. IWORK(I) = I - Q
  633. END DO
  634. CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  635. END IF
  636. ELSE IF( R .EQ. M-P ) THEN
  637. *
  638. * Case 3: R = M-P
  639. *
  640. * Simultaneously bidiagonalize X11 and X21
  641. *
  642. CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  643. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  644. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  645. *
  646. * Accumulate Householder reflectors
  647. *
  648. IF( WANTU1 .AND. P .GT. 0 ) THEN
  649. CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  650. CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  651. $ LORGQR, CHILDINFO )
  652. END IF
  653. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  654. U2(1,1) = ONE
  655. DO J = 2, M-P
  656. U2(1,J) = ZERO
  657. U2(J,1) = ZERO
  658. END DO
  659. CALL ZLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  660. $ LDU2 )
  661. CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  662. $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  663. END IF
  664. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  665. CALL ZLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  666. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  667. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  668. END IF
  669. *
  670. * Simultaneously diagonalize X11 and X21.
  671. *
  672. CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  673. $ THETA, RWORK(IPHI), CDUM, 1, V1T, LDV1T, U2, LDU2,
  674. $ U1, LDU1, RWORK(IB11D), RWORK(IB11E),
  675. $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  676. $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  677. $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
  678. *
  679. * Permute rows and columns to place identity submatrices in
  680. * preferred positions
  681. *
  682. IF( Q .GT. R ) THEN
  683. DO I = 1, R
  684. IWORK(I) = Q - R + I
  685. END DO
  686. DO I = R + 1, Q
  687. IWORK(I) = I - R
  688. END DO
  689. IF( WANTU1 ) THEN
  690. CALL ZLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  691. END IF
  692. IF( WANTV1T ) THEN
  693. CALL ZLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  694. END IF
  695. END IF
  696. ELSE
  697. *
  698. * Case 4: R = M-Q
  699. *
  700. * Simultaneously bidiagonalize X11 and X21
  701. *
  702. CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  703. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  704. $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  705. $ LORBDB-M, CHILDINFO )
  706. *
  707. * Accumulate Householder reflectors
  708. *
  709. IF( WANTU1 .AND. P .GT. 0 ) THEN
  710. CALL ZCOPY( P, WORK(IORBDB), 1, U1, 1 )
  711. DO J = 2, P
  712. U1(1,J) = ZERO
  713. END DO
  714. CALL ZLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  715. $ LDU1 )
  716. CALL ZUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  717. $ WORK(IORGQR), LORGQR, CHILDINFO )
  718. END IF
  719. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  720. CALL ZCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  721. DO J = 2, M-P
  722. U2(1,J) = ZERO
  723. END DO
  724. CALL ZLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  725. $ LDU2 )
  726. CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  727. $ WORK(IORGQR), LORGQR, CHILDINFO )
  728. END IF
  729. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  730. CALL ZLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  731. CALL ZLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  732. $ V1T(M-Q+1,M-Q+1), LDV1T )
  733. CALL ZLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  734. $ V1T(P+1,P+1), LDV1T )
  735. CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  736. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  737. END IF
  738. *
  739. * Simultaneously diagonalize X11 and X21.
  740. *
  741. CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  742. $ THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, CDUM, 1,
  743. $ V1T, LDV1T, RWORK(IB11D), RWORK(IB11E),
  744. $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  745. $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  746. $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
  747. *
  748. * Permute rows and columns to place identity submatrices in
  749. * preferred positions
  750. *
  751. IF( P .GT. R ) THEN
  752. DO I = 1, R
  753. IWORK(I) = P - R + I
  754. END DO
  755. DO I = R + 1, P
  756. IWORK(I) = I - R
  757. END DO
  758. IF( WANTU1 ) THEN
  759. CALL ZLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  760. END IF
  761. IF( WANTV1T ) THEN
  762. CALL ZLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  763. END IF
  764. END IF
  765. END IF
  766. *
  767. RETURN
  768. *
  769. * End of ZUNCSD2BY1
  770. *
  771. END