You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytri_3x.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. *> \brief \b SSYTRI_3X
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYTRI_3X + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytri_3x.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytri_3x.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytri_3x.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N, NB
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * REAL A( LDA, * ), E( * ), WORK( N+NB+1, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *> SSYTRI_3X computes the inverse of a real symmetric indefinite
  38. *> matrix A using the factorization computed by SSYTRF_RK or SSYTRF_BK:
  39. *>
  40. *> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
  41. *>
  42. *> where U (or L) is unit upper (or lower) triangular matrix,
  43. *> U**T (or L**T) is the transpose of U (or L), P is a permutation
  44. *> matrix, P**T is the transpose of P, and D is symmetric and block
  45. *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the details of the factorization are
  57. *> stored as an upper or lower triangular matrix.
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is REAL array, dimension (LDA,N)
  71. *> On entry, diagonal of the block diagonal matrix D and
  72. *> factors U or L as computed by SYTRF_RK and SSYTRF_BK:
  73. *> a) ONLY diagonal elements of the symmetric block diagonal
  74. *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
  75. *> (superdiagonal (or subdiagonal) elements of D
  76. *> should be provided on entry in array E), and
  77. *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
  78. *> If UPLO = 'L': factor L in the subdiagonal part of A.
  79. *>
  80. *> On exit, if INFO = 0, the symmetric inverse of the original
  81. *> matrix.
  82. *> If UPLO = 'U': the upper triangular part of the inverse
  83. *> is formed and the part of A below the diagonal is not
  84. *> referenced;
  85. *> If UPLO = 'L': the lower triangular part of the inverse
  86. *> is formed and the part of A above the diagonal is not
  87. *> referenced.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDA
  91. *> \verbatim
  92. *> LDA is INTEGER
  93. *> The leading dimension of the array A. LDA >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[in] E
  97. *> \verbatim
  98. *> E is REAL array, dimension (N)
  99. *> On entry, contains the superdiagonal (or subdiagonal)
  100. *> elements of the symmetric block diagonal matrix D
  101. *> with 1-by-1 or 2-by-2 diagonal blocks, where
  102. *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
  103. *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
  104. *>
  105. *> NOTE: For 1-by-1 diagonal block D(k), where
  106. *> 1 <= k <= N, the element E(k) is not referenced in both
  107. *> UPLO = 'U' or UPLO = 'L' cases.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] IPIV
  111. *> \verbatim
  112. *> IPIV is INTEGER array, dimension (N)
  113. *> Details of the interchanges and the block structure of D
  114. *> as determined by SSYTRF_RK or SSYTRF_BK.
  115. *> \endverbatim
  116. *>
  117. *> \param[out] WORK
  118. *> \verbatim
  119. *> WORK is REAL array, dimension (N+NB+1,NB+3).
  120. *> \endverbatim
  121. *>
  122. *> \param[in] NB
  123. *> \verbatim
  124. *> NB is INTEGER
  125. *> Block size.
  126. *> \endverbatim
  127. *>
  128. *> \param[out] INFO
  129. *> \verbatim
  130. *> INFO is INTEGER
  131. *> = 0: successful exit
  132. *> < 0: if INFO = -i, the i-th argument had an illegal value
  133. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  134. *> inverse could not be computed.
  135. *> \endverbatim
  136. *
  137. * Authors:
  138. * ========
  139. *
  140. *> \author Univ. of Tennessee
  141. *> \author Univ. of California Berkeley
  142. *> \author Univ. of Colorado Denver
  143. *> \author NAG Ltd.
  144. *
  145. *> \date December 2016
  146. *
  147. *> \ingroup singleSYcomputational
  148. *
  149. *> \par Contributors:
  150. * ==================
  151. *> \verbatim
  152. *>
  153. *> December 2016, Igor Kozachenko,
  154. *> Computer Science Division,
  155. *> University of California, Berkeley
  156. *>
  157. *> \endverbatim
  158. *
  159. * =====================================================================
  160. SUBROUTINE SSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  161. *
  162. * -- LAPACK computational routine (version 3.7.0) --
  163. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  164. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165. * December 2016
  166. *
  167. * .. Scalar Arguments ..
  168. CHARACTER UPLO
  169. INTEGER INFO, LDA, N, NB
  170. * ..
  171. * .. Array Arguments ..
  172. INTEGER IPIV( * )
  173. REAL A( LDA, * ), E( * ), WORK( N+NB+1, * )
  174. * ..
  175. *
  176. * =====================================================================
  177. *
  178. * .. Parameters ..
  179. REAL ONE, ZERO
  180. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  181. * ..
  182. * .. Local Scalars ..
  183. LOGICAL UPPER
  184. INTEGER CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
  185. REAL AK, AKKP1, AKP1, D, T, U01_I_J, U01_IP1_J,
  186. $ U11_I_J, U11_IP1_J
  187. * ..
  188. * .. External Functions ..
  189. LOGICAL LSAME
  190. EXTERNAL LSAME
  191. * ..
  192. * .. External Subroutines ..
  193. EXTERNAL SGEMM, SSYSWAPR, STRTRI, STRMM, XERBLA
  194. * ..
  195. * .. Intrinsic Functions ..
  196. INTRINSIC ABS, MAX, MOD
  197. * ..
  198. * .. Executable Statements ..
  199. *
  200. * Test the input parameters.
  201. *
  202. INFO = 0
  203. UPPER = LSAME( UPLO, 'U' )
  204. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  205. INFO = -1
  206. ELSE IF( N.LT.0 ) THEN
  207. INFO = -2
  208. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  209. INFO = -4
  210. END IF
  211. *
  212. * Quick return if possible
  213. *
  214. IF( INFO.NE.0 ) THEN
  215. CALL XERBLA( 'SSYTRI_3X', -INFO )
  216. RETURN
  217. END IF
  218. IF( N.EQ.0 )
  219. $ RETURN
  220. *
  221. * Workspace got Non-diag elements of D
  222. *
  223. DO K = 1, N
  224. WORK( K, 1 ) = E( K )
  225. END DO
  226. *
  227. * Check that the diagonal matrix D is nonsingular.
  228. *
  229. IF( UPPER ) THEN
  230. *
  231. * Upper triangular storage: examine D from bottom to top
  232. *
  233. DO INFO = N, 1, -1
  234. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  235. $ RETURN
  236. END DO
  237. ELSE
  238. *
  239. * Lower triangular storage: examine D from top to bottom.
  240. *
  241. DO INFO = 1, N
  242. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  243. $ RETURN
  244. END DO
  245. END IF
  246. *
  247. INFO = 0
  248. *
  249. * Splitting Workspace
  250. * U01 is a block ( N, NB+1 )
  251. * The first element of U01 is in WORK( 1, 1 )
  252. * U11 is a block ( NB+1, NB+1 )
  253. * The first element of U11 is in WORK( N+1, 1 )
  254. *
  255. U11 = N
  256. *
  257. * INVD is a block ( N, 2 )
  258. * The first element of INVD is in WORK( 1, INVD )
  259. *
  260. INVD = NB + 2
  261. IF( UPPER ) THEN
  262. *
  263. * Begin Upper
  264. *
  265. * invA = P * inv(U**T) * inv(D) * inv(U) * P**T.
  266. *
  267. CALL STRTRI( UPLO, 'U', N, A, LDA, INFO )
  268. *
  269. * inv(D) and inv(D) * inv(U)
  270. *
  271. K = 1
  272. DO WHILE( K.LE.N )
  273. IF( IPIV( K ).GT.0 ) THEN
  274. * 1 x 1 diagonal NNB
  275. WORK( K, INVD ) = ONE / A( K, K )
  276. WORK( K, INVD+1 ) = ZERO
  277. ELSE
  278. * 2 x 2 diagonal NNB
  279. T = WORK( K+1, 1 )
  280. AK = A( K, K ) / T
  281. AKP1 = A( K+1, K+1 ) / T
  282. AKKP1 = WORK( K+1, 1 ) / T
  283. D = T*( AK*AKP1-ONE )
  284. WORK( K, INVD ) = AKP1 / D
  285. WORK( K+1, INVD+1 ) = AK / D
  286. WORK( K, INVD+1 ) = -AKKP1 / D
  287. WORK( K+1, INVD ) = WORK( K, INVD+1 )
  288. K = K + 1
  289. END IF
  290. K = K + 1
  291. END DO
  292. *
  293. * inv(U**T) = (inv(U))**T
  294. *
  295. * inv(U**T) * inv(D) * inv(U)
  296. *
  297. CUT = N
  298. DO WHILE( CUT.GT.0 )
  299. NNB = NB
  300. IF( CUT.LE.NNB ) THEN
  301. NNB = CUT
  302. ELSE
  303. ICOUNT = 0
  304. * count negative elements,
  305. DO I = CUT+1-NNB, CUT
  306. IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  307. END DO
  308. * need a even number for a clear cut
  309. IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  310. END IF
  311. CUT = CUT - NNB
  312. *
  313. * U01 Block
  314. *
  315. DO I = 1, CUT
  316. DO J = 1, NNB
  317. WORK( I, J ) = A( I, CUT+J )
  318. END DO
  319. END DO
  320. *
  321. * U11 Block
  322. *
  323. DO I = 1, NNB
  324. WORK( U11+I, I ) = ONE
  325. DO J = 1, I-1
  326. WORK( U11+I, J ) = ZERO
  327. END DO
  328. DO J = I+1, NNB
  329. WORK( U11+I, J ) = A( CUT+I, CUT+J )
  330. END DO
  331. END DO
  332. *
  333. * invD * U01
  334. *
  335. I = 1
  336. DO WHILE( I.LE.CUT )
  337. IF( IPIV( I ).GT.0 ) THEN
  338. DO J = 1, NNB
  339. WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
  340. END DO
  341. ELSE
  342. DO J = 1, NNB
  343. U01_I_J = WORK( I, J )
  344. U01_IP1_J = WORK( I+1, J )
  345. WORK( I, J ) = WORK( I, INVD ) * U01_I_J
  346. $ + WORK( I, INVD+1 ) * U01_IP1_J
  347. WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
  348. $ + WORK( I+1, INVD+1 ) * U01_IP1_J
  349. END DO
  350. I = I + 1
  351. END IF
  352. I = I + 1
  353. END DO
  354. *
  355. * invD1 * U11
  356. *
  357. I = 1
  358. DO WHILE ( I.LE.NNB )
  359. IF( IPIV( CUT+I ).GT.0 ) THEN
  360. DO J = I, NNB
  361. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  362. END DO
  363. ELSE
  364. DO J = I, NNB
  365. U11_I_J = WORK(U11+I,J)
  366. U11_IP1_J = WORK(U11+I+1,J)
  367. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  368. $ + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
  369. WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
  370. $ + WORK(CUT+I+1,INVD+1) * U11_IP1_J
  371. END DO
  372. I = I + 1
  373. END IF
  374. I = I + 1
  375. END DO
  376. *
  377. * U11**T * invD1 * U11 -> U11
  378. *
  379. CALL STRMM( 'L', 'U', 'T', 'U', NNB, NNB,
  380. $ ONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  381. $ N+NB+1 )
  382. *
  383. DO I = 1, NNB
  384. DO J = I, NNB
  385. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  386. END DO
  387. END DO
  388. *
  389. * U01**T * invD * U01 -> A( CUT+I, CUT+J )
  390. *
  391. CALL SGEMM( 'T', 'N', NNB, NNB, CUT, ONE, A( 1, CUT+1 ),
  392. $ LDA, WORK, N+NB+1, ZERO, WORK(U11+1,1), N+NB+1 )
  393. *
  394. * U11 = U11**T * invD1 * U11 + U01**T * invD * U01
  395. *
  396. DO I = 1, NNB
  397. DO J = I, NNB
  398. A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
  399. END DO
  400. END DO
  401. *
  402. * U01 = U00**T * invD0 * U01
  403. *
  404. CALL STRMM( 'L', UPLO, 'T', 'U', CUT, NNB,
  405. $ ONE, A, LDA, WORK, N+NB+1 )
  406. *
  407. * Update U01
  408. *
  409. DO I = 1, CUT
  410. DO J = 1, NNB
  411. A( I, CUT+J ) = WORK( I, J )
  412. END DO
  413. END DO
  414. *
  415. * Next Block
  416. *
  417. END DO
  418. *
  419. * Apply PERMUTATIONS P and P**T:
  420. * P * inv(U**T) * inv(D) * inv(U) * P**T.
  421. * Interchange rows and columns I and IPIV(I) in reverse order
  422. * from the formation order of IPIV vector for Upper case.
  423. *
  424. * ( We can use a loop over IPIV with increment 1,
  425. * since the ABS value of IPIV(I) represents the row (column)
  426. * index of the interchange with row (column) i in both 1x1
  427. * and 2x2 pivot cases, i.e. we don't need separate code branches
  428. * for 1x1 and 2x2 pivot cases )
  429. *
  430. DO I = 1, N
  431. IP = ABS( IPIV( I ) )
  432. IF( IP.NE.I ) THEN
  433. IF (I .LT. IP) CALL SSYSWAPR( UPLO, N, A, LDA, I ,IP )
  434. IF (I .GT. IP) CALL SSYSWAPR( UPLO, N, A, LDA, IP ,I )
  435. END IF
  436. END DO
  437. *
  438. ELSE
  439. *
  440. * Begin Lower
  441. *
  442. * inv A = P * inv(L**T) * inv(D) * inv(L) * P**T.
  443. *
  444. CALL STRTRI( UPLO, 'U', N, A, LDA, INFO )
  445. *
  446. * inv(D) and inv(D) * inv(L)
  447. *
  448. K = N
  449. DO WHILE ( K .GE. 1 )
  450. IF( IPIV( K ).GT.0 ) THEN
  451. * 1 x 1 diagonal NNB
  452. WORK( K, INVD ) = ONE / A( K, K )
  453. WORK( K, INVD+1 ) = ZERO
  454. ELSE
  455. * 2 x 2 diagonal NNB
  456. T = WORK( K-1, 1 )
  457. AK = A( K-1, K-1 ) / T
  458. AKP1 = A( K, K ) / T
  459. AKKP1 = WORK( K-1, 1 ) / T
  460. D = T*( AK*AKP1-ONE )
  461. WORK( K-1, INVD ) = AKP1 / D
  462. WORK( K, INVD ) = AK / D
  463. WORK( K, INVD+1 ) = -AKKP1 / D
  464. WORK( K-1, INVD+1 ) = WORK( K, INVD+1 )
  465. K = K - 1
  466. END IF
  467. K = K - 1
  468. END DO
  469. *
  470. * inv(L**T) = (inv(L))**T
  471. *
  472. * inv(L**T) * inv(D) * inv(L)
  473. *
  474. CUT = 0
  475. DO WHILE( CUT.LT.N )
  476. NNB = NB
  477. IF( (CUT + NNB).GT.N ) THEN
  478. NNB = N - CUT
  479. ELSE
  480. ICOUNT = 0
  481. * count negative elements,
  482. DO I = CUT + 1, CUT+NNB
  483. IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  484. END DO
  485. * need a even number for a clear cut
  486. IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  487. END IF
  488. *
  489. * L21 Block
  490. *
  491. DO I = 1, N-CUT-NNB
  492. DO J = 1, NNB
  493. WORK( I, J ) = A( CUT+NNB+I, CUT+J )
  494. END DO
  495. END DO
  496. *
  497. * L11 Block
  498. *
  499. DO I = 1, NNB
  500. WORK( U11+I, I) = ONE
  501. DO J = I+1, NNB
  502. WORK( U11+I, J ) = ZERO
  503. END DO
  504. DO J = 1, I-1
  505. WORK( U11+I, J ) = A( CUT+I, CUT+J )
  506. END DO
  507. END DO
  508. *
  509. * invD*L21
  510. *
  511. I = N-CUT-NNB
  512. DO WHILE( I.GE.1 )
  513. IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
  514. DO J = 1, NNB
  515. WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
  516. END DO
  517. ELSE
  518. DO J = 1, NNB
  519. U01_I_J = WORK(I,J)
  520. U01_IP1_J = WORK(I-1,J)
  521. WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
  522. $ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
  523. WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
  524. $ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
  525. END DO
  526. I = I - 1
  527. END IF
  528. I = I - 1
  529. END DO
  530. *
  531. * invD1*L11
  532. *
  533. I = NNB
  534. DO WHILE( I.GE.1 )
  535. IF( IPIV( CUT+I ).GT.0 ) THEN
  536. DO J = 1, NNB
  537. WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
  538. END DO
  539. ELSE
  540. DO J = 1, NNB
  541. U11_I_J = WORK( U11+I, J )
  542. U11_IP1_J = WORK( U11+I-1, J )
  543. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  544. $ + WORK(CUT+I,INVD+1) * U11_IP1_J
  545. WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
  546. $ + WORK(CUT+I-1,INVD) * U11_IP1_J
  547. END DO
  548. I = I - 1
  549. END IF
  550. I = I - 1
  551. END DO
  552. *
  553. * L11**T * invD1 * L11 -> L11
  554. *
  555. CALL STRMM( 'L', UPLO, 'T', 'U', NNB, NNB, ONE,
  556. $ A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  557. $ N+NB+1 )
  558. *
  559. DO I = 1, NNB
  560. DO J = 1, I
  561. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  562. END DO
  563. END DO
  564. *
  565. IF( (CUT+NNB).LT.N ) THEN
  566. *
  567. * L21**T * invD2*L21 -> A( CUT+I, CUT+J )
  568. *
  569. CALL SGEMM( 'T', 'N', NNB, NNB, N-NNB-CUT, ONE,
  570. $ A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
  571. $ ZERO, WORK( U11+1, 1 ), N+NB+1 )
  572. *
  573. * L11 = L11**T * invD1 * L11 + U01**T * invD * U01
  574. *
  575. DO I = 1, NNB
  576. DO J = 1, I
  577. A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
  578. END DO
  579. END DO
  580. *
  581. * L01 = L22**T * invD2 * L21
  582. *
  583. CALL STRMM( 'L', UPLO, 'T', 'U', N-NNB-CUT, NNB, ONE,
  584. $ A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
  585. $ N+NB+1 )
  586. *
  587. * Update L21
  588. *
  589. DO I = 1, N-CUT-NNB
  590. DO J = 1, NNB
  591. A( CUT+NNB+I, CUT+J ) = WORK( I, J )
  592. END DO
  593. END DO
  594. *
  595. ELSE
  596. *
  597. * L11 = L11**T * invD1 * L11
  598. *
  599. DO I = 1, NNB
  600. DO J = 1, I
  601. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  602. END DO
  603. END DO
  604. END IF
  605. *
  606. * Next Block
  607. *
  608. CUT = CUT + NNB
  609. *
  610. END DO
  611. *
  612. * Apply PERMUTATIONS P and P**T:
  613. * P * inv(L**T) * inv(D) * inv(L) * P**T.
  614. * Interchange rows and columns I and IPIV(I) in reverse order
  615. * from the formation order of IPIV vector for Lower case.
  616. *
  617. * ( We can use a loop over IPIV with increment -1,
  618. * since the ABS value of IPIV(I) represents the row (column)
  619. * index of the interchange with row (column) i in both 1x1
  620. * and 2x2 pivot cases, i.e. we don't need separate code branches
  621. * for 1x1 and 2x2 pivot cases )
  622. *
  623. DO I = N, 1, -1
  624. IP = ABS( IPIV( I ) )
  625. IF( IP.NE.I ) THEN
  626. IF (I .LT. IP) CALL SSYSWAPR( UPLO, N, A, LDA, I ,IP )
  627. IF (I .GT. IP) CALL SSYSWAPR( UPLO, N, A, LDA, IP ,I )
  628. END IF
  629. END DO
  630. *
  631. END IF
  632. *
  633. RETURN
  634. *
  635. * End of SSYTRI_3X
  636. *
  637. END