You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csytrf_aa.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. *> \brief \b CSYTRF_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CSYTRF_AA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytrf_aa.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytrf_aa.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytrf_aa.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER N, LDA, LWORK, INFO
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CSYTRF_AA computes the factorization of a complex symmetric matrix A
  38. *> using the Aasen's algorithm. The form of the factorization is
  39. *>
  40. *> A = U*T*U**T or A = L*T*L**T
  41. *>
  42. *> where U (or L) is a product of permutation and unit upper (lower)
  43. *> triangular matrices, and T is a complex symmetric tridiagonal matrix.
  44. *>
  45. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is REAL array, dimension (LDA,N)
  67. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  68. *> N-by-N upper triangular part of A contains the upper
  69. *> triangular part of the matrix A, and the strictly lower
  70. *> triangular part of A is not referenced. If UPLO = 'L', the
  71. *> leading N-by-N lower triangular part of A contains the lower
  72. *> triangular part of the matrix A, and the strictly upper
  73. *> triangular part of A is not referenced.
  74. *>
  75. *> On exit, the tridiagonal matrix is stored in the diagonals
  76. *> and the subdiagonals of A just below (or above) the diagonals,
  77. *> and L is stored below (or above) the subdiaonals, when UPLO
  78. *> is 'L' (or 'U').
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] IPIV
  88. *> \verbatim
  89. *> IPIV is INTEGER array, dimension (N)
  90. *> On exit, it contains the details of the interchanges, i.e.,
  91. *> the row and column k of A were interchanged with the
  92. *> row and column IPIV(k).
  93. *> \endverbatim
  94. *>
  95. *> \param[out] WORK
  96. *> \verbatim
  97. *> WORK is REAL array, dimension (MAX(1,LWORK))
  98. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LWORK
  102. *> \verbatim
  103. *> LWORK is INTEGER
  104. *> The length of WORK. LWORK >= MAX(1,2*N). For optimum performance
  105. *> LWORK >= N*(1+NB), where NB is the optimal blocksize.
  106. *>
  107. *> If LWORK = -1, then a workspace query is assumed; the routine
  108. *> only calculates the optimal size of the WORK array, returns
  109. *> this value as the first entry of the WORK array, and no error
  110. *> message related to LWORK is issued by XERBLA.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] INFO
  114. *> \verbatim
  115. *> INFO is INTEGER
  116. *> = 0: successful exit
  117. *> < 0: if INFO = -i, the i-th argument had an illegal value
  118. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  119. *> has been completed, but the block diagonal matrix D is
  120. *> exactly singular, and division by zero will occur if it
  121. *> is used to solve a system of equations.
  122. *> \endverbatim
  123. *
  124. * Authors:
  125. * ========
  126. *
  127. *> \author Univ. of Tennessee
  128. *> \author Univ. of California Berkeley
  129. *> \author Univ. of Colorado Denver
  130. *> \author NAG Ltd.
  131. *
  132. *> \date December 2016
  133. *
  134. *> \ingroup complexSYcomputational
  135. *
  136. * =====================================================================
  137. SUBROUTINE CSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
  138. *
  139. * -- LAPACK computational routine (version 3.7.0) --
  140. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  141. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142. * December 2016
  143. *
  144. IMPLICIT NONE
  145. *
  146. * .. Scalar Arguments ..
  147. CHARACTER UPLO
  148. INTEGER N, LDA, LWORK, INFO
  149. * ..
  150. * .. Array Arguments ..
  151. INTEGER IPIV( * )
  152. COMPLEX A( LDA, * ), WORK( * )
  153. * ..
  154. *
  155. * =====================================================================
  156. * .. Parameters ..
  157. COMPLEX ZERO, ONE
  158. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  159. *
  160. * .. Local Scalars ..
  161. LOGICAL LQUERY, UPPER
  162. INTEGER J, LWKOPT, IINFO
  163. INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB
  164. COMPLEX ALPHA
  165. * ..
  166. * .. External Functions ..
  167. LOGICAL LSAME
  168. INTEGER ILAENV
  169. EXTERNAL LSAME, ILAENV
  170. * ..
  171. * .. External Subroutines ..
  172. EXTERNAL XERBLA
  173. * ..
  174. * .. Intrinsic Functions ..
  175. INTRINSIC MAX
  176. * ..
  177. * .. Executable Statements ..
  178. *
  179. * Determine the block size
  180. *
  181. NB = ILAENV( 1, 'CSYTRF', UPLO, N, -1, -1, -1 )
  182. *
  183. * Test the input parameters.
  184. *
  185. INFO = 0
  186. UPPER = LSAME( UPLO, 'U' )
  187. LQUERY = ( LWORK.EQ.-1 )
  188. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  189. INFO = -1
  190. ELSE IF( N.LT.0 ) THEN
  191. INFO = -2
  192. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  193. INFO = -4
  194. ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  195. INFO = -7
  196. END IF
  197. *
  198. IF( INFO.EQ.0 ) THEN
  199. LWKOPT = (NB+1)*N
  200. WORK( 1 ) = LWKOPT
  201. END IF
  202. *
  203. IF( INFO.NE.0 ) THEN
  204. CALL XERBLA( 'CSYTRF_AA', -INFO )
  205. RETURN
  206. ELSE IF( LQUERY ) THEN
  207. RETURN
  208. END IF
  209. *
  210. * Quick return
  211. *
  212. IF ( N.EQ.0 ) THEN
  213. RETURN
  214. ENDIF
  215. IPIV( 1 ) = 1
  216. IF ( N.EQ.1 ) THEN
  217. IF ( A( 1, 1 ).EQ.ZERO ) THEN
  218. INFO = 1
  219. END IF
  220. RETURN
  221. END IF
  222. *
  223. * Adjubst block size based on the workspace size
  224. *
  225. IF( LWORK.LT.((1+NB)*N) ) THEN
  226. NB = ( LWORK-N ) / N
  227. END IF
  228. *
  229. IF( UPPER ) THEN
  230. *
  231. * .....................................................
  232. * Factorize A as L*D*L**T using the upper triangle of A
  233. * .....................................................
  234. *
  235. * Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
  236. *
  237. CALL CCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
  238. *
  239. * J is the main loop index, increasing from 1 to N in steps of
  240. * JB, where JB is the number of columns factorized by CLASYF;
  241. * JB is either NB, or N-J+1 for the last block
  242. *
  243. J = 0
  244. 10 CONTINUE
  245. IF( J.GE.N )
  246. $ GO TO 20
  247. *
  248. * each step of the main loop
  249. * J is the last column of the previous panel
  250. * J1 is the first column of the current panel
  251. * K1 identifies if the previous column of the panel has been
  252. * explicitly stored, e.g., K1=1 for the first panel, and
  253. * K1=0 for the rest
  254. *
  255. J1 = J + 1
  256. JB = MIN( N-J1+1, NB )
  257. K1 = MAX(1, J)-J
  258. *
  259. * Panel factorization
  260. *
  261. CALL CLASYF_AA( UPLO, 2-K1, N-J, JB,
  262. $ A( MAX(1, J), J+1 ), LDA,
  263. $ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ),
  264. $ IINFO )
  265. IF( (IINFO.GT.0) .AND. (INFO.EQ.0) ) THEN
  266. INFO = IINFO+J
  267. ENDIF
  268. *
  269. * Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  270. *
  271. DO J2 = J+2, MIN(N, J+JB+1)
  272. IPIV( J2 ) = IPIV( J2 ) + J
  273. IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  274. CALL CSWAP( J1-K1-2, A( 1, J2 ), 1,
  275. $ A( 1, IPIV(J2) ), 1 )
  276. END IF
  277. END DO
  278. J = J + JB
  279. *
  280. * Trailing submatrix update, where
  281. * the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
  282. * WORK stores the current block of the auxiriarly matrix H
  283. *
  284. IF( J.LT.N ) THEN
  285. *
  286. * If first panel and JB=1 (NB=1), then nothing to do
  287. *
  288. IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  289. *
  290. * Merge rank-1 update with BLAS-3 update
  291. *
  292. ALPHA = A( J, J+1 )
  293. A( J, J+1 ) = ONE
  294. CALL CCOPY( N-J, A( J-1, J+1 ), LDA,
  295. $ WORK( (J+1-J1+1)+JB*N ), 1 )
  296. CALL CSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  297. *
  298. * K1 identifies if the previous column of the panel has been
  299. * explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
  300. * while K1=0 and K2=1 for the rest
  301. *
  302. IF( J1.GT.1 ) THEN
  303. *
  304. * Not first panel
  305. *
  306. K2 = 1
  307. ELSE
  308. *
  309. * First panel
  310. *
  311. K2 = 0
  312. *
  313. * First update skips the first column
  314. *
  315. JB = JB - 1
  316. END IF
  317. *
  318. DO J2 = J+1, N, NB
  319. NJ = MIN( NB, N-J2+1 )
  320. *
  321. * Update (J2, J2) diagonal block with CGEMV
  322. *
  323. J3 = J2
  324. DO MJ = NJ-1, 1, -1
  325. CALL CGEMV( 'No transpose', MJ, JB+1,
  326. $ -ONE, WORK( J3-J1+1+K1*N ), N,
  327. $ A( J1-K2, J3 ), 1,
  328. $ ONE, A( J3, J3 ), LDA )
  329. J3 = J3 + 1
  330. END DO
  331. *
  332. * Update off-diagonal block of J2-th block row with CGEMM
  333. *
  334. CALL CGEMM( 'Transpose', 'Transpose',
  335. $ NJ, N-J3+1, JB+1,
  336. $ -ONE, A( J1-K2, J2 ), LDA,
  337. $ WORK( J3-J1+1+K1*N ), N,
  338. $ ONE, A( J2, J3 ), LDA )
  339. END DO
  340. *
  341. * Recover T( J, J+1 )
  342. *
  343. A( J, J+1 ) = ALPHA
  344. END IF
  345. *
  346. * WORK(J+1, 1) stores H(J+1, 1)
  347. *
  348. CALL CCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
  349. END IF
  350. GO TO 10
  351. ELSE
  352. *
  353. * .....................................................
  354. * Factorize A as L*D*L**T using the lower triangle of A
  355. * .....................................................
  356. *
  357. * copy first column A(1:N, 1) into H(1:N, 1)
  358. * (stored in WORK(1:N))
  359. *
  360. CALL CCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
  361. *
  362. * J is the main loop index, increasing from 1 to N in steps of
  363. * JB, where JB is the number of columns factorized by CLASYF;
  364. * JB is either NB, or N-J+1 for the last block
  365. *
  366. J = 0
  367. 11 CONTINUE
  368. IF( J.GE.N )
  369. $ GO TO 20
  370. *
  371. * each step of the main loop
  372. * J is the last column of the previous panel
  373. * J1 is the first column of the current panel
  374. * K1 identifies if the previous column of the panel has been
  375. * explicitly stored, e.g., K1=1 for the first panel, and
  376. * K1=0 for the rest
  377. *
  378. J1 = J+1
  379. JB = MIN( N-J1+1, NB )
  380. K1 = MAX(1, J)-J
  381. *
  382. * Panel factorization
  383. *
  384. CALL CLASYF_AA( UPLO, 2-K1, N-J, JB,
  385. $ A( J+1, MAX(1, J) ), LDA,
  386. $ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ), IINFO)
  387. IF( (IINFO.GT.0) .AND. (INFO.EQ.0) ) THEN
  388. INFO = IINFO+J
  389. ENDIF
  390. *
  391. * Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  392. *
  393. DO J2 = J+2, MIN(N, J+JB+1)
  394. IPIV( J2 ) = IPIV( J2 ) + J
  395. IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  396. CALL CSWAP( J1-K1-2, A( J2, 1 ), LDA,
  397. $ A( IPIV(J2), 1 ), LDA )
  398. END IF
  399. END DO
  400. J = J + JB
  401. *
  402. * Trailing submatrix update, where
  403. * A(J2+1, J1-1) stores L(J2+1, J1) and
  404. * WORK(J2+1, 1) stores H(J2+1, 1)
  405. *
  406. IF( J.LT.N ) THEN
  407. *
  408. * if first panel and JB=1 (NB=1), then nothing to do
  409. *
  410. IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  411. *
  412. * Merge rank-1 update with BLAS-3 update
  413. *
  414. ALPHA = A( J+1, J )
  415. A( J+1, J ) = ONE
  416. CALL CCOPY( N-J, A( J+1, J-1 ), 1,
  417. $ WORK( (J+1-J1+1)+JB*N ), 1 )
  418. CALL CSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  419. *
  420. * K1 identifies if the previous column of the panel has been
  421. * explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
  422. * while K1=0 and K2=1 for the rest
  423. *
  424. IF( J1.GT.1 ) THEN
  425. *
  426. * Not first panel
  427. *
  428. K2 = 1
  429. ELSE
  430. *
  431. * First panel
  432. *
  433. K2 = 0
  434. *
  435. * First update skips the first column
  436. *
  437. JB = JB - 1
  438. END IF
  439. *
  440. DO J2 = J+1, N, NB
  441. NJ = MIN( NB, N-J2+1 )
  442. *
  443. * Update (J2, J2) diagonal block with CGEMV
  444. *
  445. J3 = J2
  446. DO MJ = NJ-1, 1, -1
  447. CALL CGEMV( 'No transpose', MJ, JB+1,
  448. $ -ONE, WORK( J3-J1+1+K1*N ), N,
  449. $ A( J3, J1-K2 ), LDA,
  450. $ ONE, A( J3, J3 ), 1 )
  451. J3 = J3 + 1
  452. END DO
  453. *
  454. * Update off-diagonal block in J2-th block column with CGEMM
  455. *
  456. CALL CGEMM( 'No transpose', 'Transpose',
  457. $ N-J3+1, NJ, JB+1,
  458. $ -ONE, WORK( J3-J1+1+K1*N ), N,
  459. $ A( J2, J1-K2 ), LDA,
  460. $ ONE, A( J3, J2 ), LDA )
  461. END DO
  462. *
  463. * Recover T( J+1, J )
  464. *
  465. A( J+1, J ) = ALPHA
  466. END IF
  467. *
  468. * WORK(J+1, 1) stores H(J+1, 1)
  469. *
  470. CALL CCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
  471. END IF
  472. GO TO 11
  473. END IF
  474. *
  475. 20 CONTINUE
  476. RETURN
  477. *
  478. * End of CSYTRF_AA
  479. *
  480. END