|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792 |
- /*****************************************************************************
- Copyright (c) 2023, The OpenBLAS Project
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
-
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- 3. Neither the name of the OpenBLAS project nor the names of
- its contributors may be used to endorse or promote products
- derived from this software without specific prior written
- permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- **********************************************************************************/
-
- #include "utest/openblas_utest.h"
- #include "common.h"
-
- #define DATASIZE 100
- #define INCREMENT 2
-
- struct DATA_ZROT {
- double x_test[DATASIZE * INCREMENT * 2];
- double y_test[DATASIZE * INCREMENT * 2];
- double x_verify[DATASIZE * INCREMENT * 2];
- double y_verify[DATASIZE * INCREMENT * 2];
- };
-
- #ifdef BUILD_COMPLEX16
- static struct DATA_ZROT data_zrot;
-
- /**
- * Comapare results computed by zdrot and zaxpby
- *
- * param n specifies size of vector x
- * param inc_x specifies increment of vector x
- * param inc_y specifies increment of vector y
- * param c specifies cosine
- * param s specifies sine
- * return norm of differences
- */
- static double check_zdrot(blasint n, blasint inc_x, blasint inc_y, double *c, double *s)
- {
- blasint i;
- double norm = 0;
- double s_neg[] = {-s[0], s[1]};
-
- blasint inc_x_abs = labs(inc_x);
- blasint inc_y_abs = labs(inc_y);
-
- // Fill vectors x, y
- drand_generate(data_zrot.x_test, n * inc_x_abs * 2);
- drand_generate(data_zrot.y_test, n * inc_y_abs * 2);
-
- if (inc_x == 0 && inc_y == 0) {
- drand_generate(data_zrot.x_test, n * 2);
- drand_generate(data_zrot.y_test, n * 2);
- }
-
- // Copy vector x for zaxpby
- for (i = 0; i < n * inc_x_abs * 2; i++)
- data_zrot.x_verify[i] = data_zrot.x_test[i];
-
- // Copy vector y for zaxpby
- for (i = 0; i < n * inc_y_abs * 2; i++)
- data_zrot.y_verify[i] = data_zrot.y_test[i];
-
- // Find cx = c*x + s*y
- BLASFUNC(zaxpby)(&n, s, data_zrot.y_test, &inc_y, c, data_zrot.x_verify, &inc_x);
-
- // Find cy = -conjg(s)*x + c*y
- BLASFUNC(zaxpby)(&n, s_neg, data_zrot.x_test, &inc_x, c, data_zrot.y_verify, &inc_y);
-
- BLASFUNC(zdrot)(&n, data_zrot.x_test, &inc_x, data_zrot.y_test, &inc_y, c, s);
-
- // Find the differences between vector x caculated by zaxpby and zdrot
- for (i = 0; i < n * 2 * inc_x_abs; i++)
- data_zrot.x_test[i] -= data_zrot.x_verify[i];
-
- // Find the differences between vector y caculated by zaxpby and zdrot
- for (i = 0; i < n * 2 * inc_y_abs; i++)
- data_zrot.y_test[i] -= data_zrot.y_verify[i];
-
- // Find the norm of differences
- norm += BLASFUNC(dznrm2)(&n, data_zrot.x_test, &inc_x_abs);
- norm += BLASFUNC(dznrm2)(&n, data_zrot.y_test, &inc_y_abs);
- return (norm / 2);
- }
-
- #ifndef NO_CBLAS
- /**
- * C API specific function
- * Comapare results computed by zdrot and zaxpby
- *
- * param n specifies size of vector x
- * param inc_x specifies increment of vector x
- * param inc_y specifies increment of vector y
- * param c specifies cosine
- * param s specifies sine
- * return norm of differences
- */
- static double c_api_check_zdrot(blasint n, blasint inc_x, blasint inc_y, double *c, double *s)
- {
- blasint i;
- double norm = 0;
- double s_neg[] = {-s[0], s[1]};
-
- blasint inc_x_abs = labs(inc_x);
- blasint inc_y_abs = labs(inc_y);
-
- // Fill vectors x, y
- drand_generate(data_zrot.x_test, n * inc_x_abs * 2);
- drand_generate(data_zrot.y_test, n * inc_y_abs * 2);
-
- if (inc_x == 0 && inc_y == 0) {
- drand_generate(data_zrot.x_test, n * 2);
- drand_generate(data_zrot.y_test, n * 2);
- }
-
- // Copy vector x for zaxpby
- for (i = 0; i < n * inc_x_abs * 2; i++)
- data_zrot.x_verify[i] = data_zrot.x_test[i];
-
- // Copy vector y for zaxpby
- for (i = 0; i < n * inc_y_abs * 2; i++)
- data_zrot.y_verify[i] = data_zrot.y_test[i];
-
- // Find cx = c*x + s*y
- cblas_zaxpby(n, s, data_zrot.y_test, inc_y, c, data_zrot.x_verify, inc_x);
-
- // Find cy = -conjg(s)*x + c*y
- cblas_zaxpby(n, s_neg, data_zrot.x_test, inc_x, c, data_zrot.y_verify, inc_y);
-
- cblas_zdrot(n, data_zrot.x_test, inc_x, data_zrot.y_test, inc_y, c[0], s[0]);
-
- // Find the differences between vector x caculated by zaxpby and zdrot
- for (i = 0; i < n * 2 * inc_x_abs; i++)
- data_zrot.x_test[i] -= data_zrot.x_verify[i];
-
- // Find the differences between vector y caculated by zaxpby and zdrot
- for (i = 0; i < n * 2 * inc_y_abs; i++)
- data_zrot.y_test[i] -= data_zrot.y_verify[i];
-
- // Find the norm of differences
- norm += cblas_dznrm2(n, data_zrot.x_test, inc_x_abs);
- norm += cblas_dznrm2(n, data_zrot.y_test, inc_y_abs);
- return (norm / 2);
- }
- #if 0
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 0
- * Stride of vector y is 0
- * c = 1.0
- * s = 2.0
- */
- CTEST(zrot, inc_x_0_inc_y_0)
- {
- blasint n = 100;
-
- blasint inc_x = 0;
- blasint inc_y = 0;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {2.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
- #endif
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is 1
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, inc_x_1_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = 1;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is -1
- * Stride of vector y is -1
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, inc_x_neg_1_inc_y_neg_1)
- {
- blasint n = 100;
-
- blasint inc_x = -1;
- blasint inc_y = -1;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 1
- * c = 3.0
- * s = 2.0
- */
- CTEST(zrot, inc_x_2_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 1;
-
- // Imaginary part for zaxpby
- double c[] = {3.0, 0.0};
- double s[] = {2.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is -2
- * Stride of vector y is 1
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, inc_x_neg_2_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = -2;
- blasint inc_y = 1;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is 2
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, inc_x_1_inc_y_2)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = 2;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is -2
- * c = 2.0
- * s = 1.0
- */
- CTEST(zrot, inc_x_1_inc_y_neg_2)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = -2;
-
- // Imaginary part for zaxpby
- double c[] = {2.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0
- * s = 2.0
- */
- CTEST(zrot, inc_x_2_inc_y_2)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {2.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, inc_x_neg_2_inc_y_neg_2)
- {
- blasint n = 100;
-
- blasint inc_x = -2;
- blasint inc_y = -2;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 0.0
- * s = 1.0
- */
- CTEST(zrot, inc_x_2_inc_y_2_c_zero)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for zaxpby
- double c[] = {0.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0
- * s = 0.0
- */
- CTEST(zrot, inc_x_2_inc_y_2_s_zero)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {0.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 0
- * Stride of vector x is 1
- * Stride of vector y is 1
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, check_n_zero)
- {
- blasint n = 0;
-
- blasint inc_x = 1;
- blasint inc_y = 1;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
- #if 0
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 0
- * Stride of vector y is 0
- * c = 1.0
- * s = 2.0
- */
- CTEST(zrot, c_api_inc_x_0_inc_y_0)
- {
- blasint n = 100;
-
- blasint inc_x = 0;
- blasint inc_y = 0;
-
- // Imaginary part for zaxpby
- double c[] = {3.0, 0.0};
- double s[] = {2.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
- #endif
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is 1
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, c_api_inc_x_1_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = 1;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is -1
- * Stride of vector y is -1
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, c_api_inc_x_neg_1_inc_y_neg_1)
- {
- blasint n = 100;
-
- blasint inc_x = -1;
- blasint inc_y = -1;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 1
- * c = 3.0
- * s = 2.0
- */
- CTEST(zrot, c_api_inc_x_2_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 1;
-
- // Imaginary part for zaxpby
- double c[] = {3.0, 0.0};
- double s[] = {2.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is -2
- * Stride of vector y is 1
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, c_api_inc_x_neg_2_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = -2;
- blasint inc_y = 1;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is 2
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, c_api_inc_x_1_inc_y_2)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = 2;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is -2
- * c = 2.0
- * s = 1.0
- */
- CTEST(zrot, c_api_inc_x_1_inc_y_neg_2)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = -2;
-
- // Imaginary part for zaxpby
- double c[] = {2.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0
- * s = 2.0
- */
- CTEST(zrot, c_api_inc_x_2_inc_y_2)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {2.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, c_api_inc_x_neg_2_inc_y_neg_2)
- {
- blasint n = 100;
-
- blasint inc_x = -2;
- blasint inc_y = -2;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 0.0
- * s = 1.0
- */
- CTEST(zrot, c_api_inc_x_2_inc_y_2_c_zero)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for zaxpby
- double c[] = {0.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0
- * s = 0.0
- */
- CTEST(zrot, c_api_inc_x_2_inc_y_2_s_zero)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {0.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
-
- /**
- * C API specific test
- * Test zrot by comparing it with zaxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 0
- * Stride of vector x is 1
- * Stride of vector y is 1
- * c = 1.0
- * s = 1.0
- */
- CTEST(zrot, c_api_check_n_zero)
- {
- blasint n = 0;
-
- blasint inc_x = 1;
- blasint inc_y = 1;
-
- // Imaginary part for zaxpby
- double c[] = {1.0, 0.0};
- double s[] = {1.0, 0.0};
-
- double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
- }
- #endif
- #endif
|