You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slatm6.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. *> \brief \b SLATM6
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
  12. * BETA, WX, WY, S, DIF )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LDX, LDY, N, TYPE
  16. * REAL ALPHA, BETA, WX, WY
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL A( LDA, * ), B( LDA, * ), DIF( * ), S( * ),
  20. * $ X( LDX, * ), Y( LDY, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> SLATM6 generates test matrices for the generalized eigenvalue
  30. *> problem, their corresponding right and left eigenvector matrices,
  31. *> and also reciprocal condition numbers for all eigenvalues and
  32. *> the reciprocal condition numbers of eigenvectors corresponding to
  33. *> the 1th and 5th eigenvalues.
  34. *>
  35. *> Test Matrices
  36. *> =============
  37. *>
  38. *> Two kinds of test matrix pairs
  39. *>
  40. *> (A, B) = inverse(YH) * (Da, Db) * inverse(X)
  41. *>
  42. *> are used in the tests:
  43. *>
  44. *> Type 1:
  45. *> Da = 1+a 0 0 0 0 Db = 1 0 0 0 0
  46. *> 0 2+a 0 0 0 0 1 0 0 0
  47. *> 0 0 3+a 0 0 0 0 1 0 0
  48. *> 0 0 0 4+a 0 0 0 0 1 0
  49. *> 0 0 0 0 5+a , 0 0 0 0 1 , and
  50. *>
  51. *> Type 2:
  52. *> Da = 1 -1 0 0 0 Db = 1 0 0 0 0
  53. *> 1 1 0 0 0 0 1 0 0 0
  54. *> 0 0 1 0 0 0 0 1 0 0
  55. *> 0 0 0 1+a 1+b 0 0 0 1 0
  56. *> 0 0 0 -1-b 1+a , 0 0 0 0 1 .
  57. *>
  58. *> In both cases the same inverse(YH) and inverse(X) are used to compute
  59. *> (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
  60. *>
  61. *> YH: = 1 0 -y y -y X = 1 0 -x -x x
  62. *> 0 1 -y y -y 0 1 x -x -x
  63. *> 0 0 1 0 0 0 0 1 0 0
  64. *> 0 0 0 1 0 0 0 0 1 0
  65. *> 0 0 0 0 1, 0 0 0 0 1 ,
  66. *>
  67. *> where a, b, x and y will have all values independently of each other.
  68. *> \endverbatim
  69. *
  70. * Arguments:
  71. * ==========
  72. *
  73. *> \param[in] TYPE
  74. *> \verbatim
  75. *> TYPE is INTEGER
  76. *> Specifies the problem type (see further details).
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> Size of the matrices A and B.
  83. *> \endverbatim
  84. *>
  85. *> \param[out] A
  86. *> \verbatim
  87. *> A is REAL array, dimension (LDA, N).
  88. *> On exit A N-by-N is initialized according to TYPE.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] LDA
  92. *> \verbatim
  93. *> LDA is INTEGER
  94. *> The leading dimension of A and of B.
  95. *> \endverbatim
  96. *>
  97. *> \param[out] B
  98. *> \verbatim
  99. *> B is REAL array, dimension (LDA, N).
  100. *> On exit B N-by-N is initialized according to TYPE.
  101. *> \endverbatim
  102. *>
  103. *> \param[out] X
  104. *> \verbatim
  105. *> X is REAL array, dimension (LDX, N).
  106. *> On exit X is the N-by-N matrix of right eigenvectors.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] LDX
  110. *> \verbatim
  111. *> LDX is INTEGER
  112. *> The leading dimension of X.
  113. *> \endverbatim
  114. *>
  115. *> \param[out] Y
  116. *> \verbatim
  117. *> Y is REAL array, dimension (LDY, N).
  118. *> On exit Y is the N-by-N matrix of left eigenvectors.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDY
  122. *> \verbatim
  123. *> LDY is INTEGER
  124. *> The leading dimension of Y.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] ALPHA
  128. *> \verbatim
  129. *> ALPHA is REAL
  130. *> \endverbatim
  131. *>
  132. *> \param[in] BETA
  133. *> \verbatim
  134. *> BETA is REAL
  135. *>
  136. *> Weighting constants for matrix A.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] WX
  140. *> \verbatim
  141. *> WX is REAL
  142. *> Constant for right eigenvector matrix.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] WY
  146. *> \verbatim
  147. *> WY is REAL
  148. *> Constant for left eigenvector matrix.
  149. *> \endverbatim
  150. *>
  151. *> \param[out] S
  152. *> \verbatim
  153. *> S is REAL array, dimension (N)
  154. *> S(i) is the reciprocal condition number for eigenvalue i.
  155. *> \endverbatim
  156. *>
  157. *> \param[out] DIF
  158. *> \verbatim
  159. *> DIF is REAL array, dimension (N)
  160. *> DIF(i) is the reciprocal condition number for eigenvector i.
  161. *> \endverbatim
  162. *
  163. * Authors:
  164. * ========
  165. *
  166. *> \author Univ. of Tennessee
  167. *> \author Univ. of California Berkeley
  168. *> \author Univ. of Colorado Denver
  169. *> \author NAG Ltd.
  170. *
  171. *> \ingroup real_matgen
  172. *
  173. * =====================================================================
  174. SUBROUTINE SLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
  175. $ BETA, WX, WY, S, DIF )
  176. *
  177. * -- LAPACK computational routine --
  178. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  179. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  180. *
  181. * .. Scalar Arguments ..
  182. INTEGER LDA, LDX, LDY, N, TYPE
  183. REAL ALPHA, BETA, WX, WY
  184. * ..
  185. * .. Array Arguments ..
  186. REAL A( LDA, * ), B( LDA, * ), DIF( * ), S( * ),
  187. $ X( LDX, * ), Y( LDY, * )
  188. * ..
  189. *
  190. * =====================================================================
  191. *
  192. * .. Parameters ..
  193. REAL ZERO, ONE, TWO, THREE
  194. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
  195. $ THREE = 3.0E+0 )
  196. * ..
  197. * .. Local Scalars ..
  198. INTEGER I, INFO, J
  199. * ..
  200. * .. Local Arrays ..
  201. REAL WORK( 100 ), Z( 12, 12 )
  202. * ..
  203. * .. Intrinsic Functions ..
  204. INTRINSIC REAL, SQRT
  205. * ..
  206. * .. External Subroutines ..
  207. EXTERNAL SGESVD, SLACPY, SLAKF2
  208. * ..
  209. * .. Executable Statements ..
  210. *
  211. * Generate test problem ...
  212. * (Da, Db) ...
  213. *
  214. DO 20 I = 1, N
  215. DO 10 J = 1, N
  216. *
  217. IF( I.EQ.J ) THEN
  218. A( I, I ) = REAL( I ) + ALPHA
  219. B( I, I ) = ONE
  220. ELSE
  221. A( I, J ) = ZERO
  222. B( I, J ) = ZERO
  223. END IF
  224. *
  225. 10 CONTINUE
  226. 20 CONTINUE
  227. *
  228. * Form X and Y
  229. *
  230. CALL SLACPY( 'F', N, N, B, LDA, Y, LDY )
  231. Y( 3, 1 ) = -WY
  232. Y( 4, 1 ) = WY
  233. Y( 5, 1 ) = -WY
  234. Y( 3, 2 ) = -WY
  235. Y( 4, 2 ) = WY
  236. Y( 5, 2 ) = -WY
  237. *
  238. CALL SLACPY( 'F', N, N, B, LDA, X, LDX )
  239. X( 1, 3 ) = -WX
  240. X( 1, 4 ) = -WX
  241. X( 1, 5 ) = WX
  242. X( 2, 3 ) = WX
  243. X( 2, 4 ) = -WX
  244. X( 2, 5 ) = -WX
  245. *
  246. * Form (A, B)
  247. *
  248. B( 1, 3 ) = WX + WY
  249. B( 2, 3 ) = -WX + WY
  250. B( 1, 4 ) = WX - WY
  251. B( 2, 4 ) = WX - WY
  252. B( 1, 5 ) = -WX + WY
  253. B( 2, 5 ) = WX + WY
  254. IF( TYPE.EQ.1 ) THEN
  255. A( 1, 3 ) = WX*A( 1, 1 ) + WY*A( 3, 3 )
  256. A( 2, 3 ) = -WX*A( 2, 2 ) + WY*A( 3, 3 )
  257. A( 1, 4 ) = WX*A( 1, 1 ) - WY*A( 4, 4 )
  258. A( 2, 4 ) = WX*A( 2, 2 ) - WY*A( 4, 4 )
  259. A( 1, 5 ) = -WX*A( 1, 1 ) + WY*A( 5, 5 )
  260. A( 2, 5 ) = WX*A( 2, 2 ) + WY*A( 5, 5 )
  261. ELSE IF( TYPE.EQ.2 ) THEN
  262. A( 1, 3 ) = TWO*WX + WY
  263. A( 2, 3 ) = WY
  264. A( 1, 4 ) = -WY*( TWO+ALPHA+BETA )
  265. A( 2, 4 ) = TWO*WX - WY*( TWO+ALPHA+BETA )
  266. A( 1, 5 ) = -TWO*WX + WY*( ALPHA-BETA )
  267. A( 2, 5 ) = WY*( ALPHA-BETA )
  268. A( 1, 1 ) = ONE
  269. A( 1, 2 ) = -ONE
  270. A( 2, 1 ) = ONE
  271. A( 2, 2 ) = A( 1, 1 )
  272. A( 3, 3 ) = ONE
  273. A( 4, 4 ) = ONE + ALPHA
  274. A( 4, 5 ) = ONE + BETA
  275. A( 5, 4 ) = -A( 4, 5 )
  276. A( 5, 5 ) = A( 4, 4 )
  277. END IF
  278. *
  279. * Compute condition numbers
  280. *
  281. IF( TYPE.EQ.1 ) THEN
  282. *
  283. S( 1 ) = ONE / SQRT( ( ONE+THREE*WY*WY ) /
  284. $ ( ONE+A( 1, 1 )*A( 1, 1 ) ) )
  285. S( 2 ) = ONE / SQRT( ( ONE+THREE*WY*WY ) /
  286. $ ( ONE+A( 2, 2 )*A( 2, 2 ) ) )
  287. S( 3 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) /
  288. $ ( ONE+A( 3, 3 )*A( 3, 3 ) ) )
  289. S( 4 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) /
  290. $ ( ONE+A( 4, 4 )*A( 4, 4 ) ) )
  291. S( 5 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) /
  292. $ ( ONE+A( 5, 5 )*A( 5, 5 ) ) )
  293. *
  294. CALL SLAKF2( 1, 4, A, LDA, A( 2, 2 ), B, B( 2, 2 ), Z, 12 )
  295. CALL SGESVD( 'N', 'N', 8, 8, Z, 12, WORK, WORK( 9 ), 1,
  296. $ WORK( 10 ), 1, WORK( 11 ), 40, INFO )
  297. DIF( 1 ) = WORK( 8 )
  298. *
  299. CALL SLAKF2( 4, 1, A, LDA, A( 5, 5 ), B, B( 5, 5 ), Z, 12 )
  300. CALL SGESVD( 'N', 'N', 8, 8, Z, 12, WORK, WORK( 9 ), 1,
  301. $ WORK( 10 ), 1, WORK( 11 ), 40, INFO )
  302. DIF( 5 ) = WORK( 8 )
  303. *
  304. ELSE IF( TYPE.EQ.2 ) THEN
  305. *
  306. S( 1 ) = ONE / SQRT( ONE / THREE+WY*WY )
  307. S( 2 ) = S( 1 )
  308. S( 3 ) = ONE / SQRT( ONE / TWO+WX*WX )
  309. S( 4 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) /
  310. $ ( ONE+( ONE+ALPHA )*( ONE+ALPHA )+( ONE+BETA )*( ONE+
  311. $ BETA ) ) )
  312. S( 5 ) = S( 4 )
  313. *
  314. CALL SLAKF2( 2, 3, A, LDA, A( 3, 3 ), B, B( 3, 3 ), Z, 12 )
  315. CALL SGESVD( 'N', 'N', 12, 12, Z, 12, WORK, WORK( 13 ), 1,
  316. $ WORK( 14 ), 1, WORK( 15 ), 60, INFO )
  317. DIF( 1 ) = WORK( 12 )
  318. *
  319. CALL SLAKF2( 3, 2, A, LDA, A( 4, 4 ), B, B( 4, 4 ), Z, 12 )
  320. CALL SGESVD( 'N', 'N', 12, 12, Z, 12, WORK, WORK( 13 ), 1,
  321. $ WORK( 14 ), 1, WORK( 15 ), 60, INFO )
  322. DIF( 5 ) = WORK( 12 )
  323. *
  324. END IF
  325. *
  326. RETURN
  327. *
  328. * End of SLATM6
  329. *
  330. END