You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zqrt17.f 7.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. *> \brief \b ZQRT17
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * DOUBLE PRECISION FUNCTION ZQRT17( TRANS, IRESID, M, N, NRHS, A,
  12. * LDA, X, LDX, B, LDB, C, WORK, LWORK )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER TRANS
  16. * INTEGER IRESID, LDA, LDB, LDX, LWORK, M, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDB, * ),
  20. * $ WORK( LWORK ), X( LDX, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> ZQRT17 computes the ratio
  30. *>
  31. *> norm(R**H * op(A)) / ( norm(A) * alpha * max(M,N,NRHS) * EPS ),
  32. *>
  33. *> where R = B - op(A)*X, op(A) is A or A**H, depending on TRANS, EPS
  34. *> is the machine epsilon, and
  35. *>
  36. *> alpha = norm(B) if IRESID = 1 (zero-residual problem)
  37. *> alpha = norm(R) if IRESID = 2 (otherwise).
  38. *>
  39. *> The norm used is the 1-norm.
  40. *> \endverbatim
  41. *
  42. * Arguments:
  43. * ==========
  44. *
  45. *> \param[in] TRANS
  46. *> \verbatim
  47. *> TRANS is CHARACTER*1
  48. *> Specifies whether or not the transpose of A is used.
  49. *> = 'N': No transpose, op(A) = A.
  50. *> = 'C': Conjugate transpose, op(A) = A**H.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] IRESID
  54. *> \verbatim
  55. *> IRESID is INTEGER
  56. *> IRESID = 1 indicates zero-residual problem.
  57. *> IRESID = 2 indicates non-zero residual.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] M
  61. *> \verbatim
  62. *> M is INTEGER
  63. *> The number of rows of the matrix A.
  64. *> If TRANS = 'N', the number of rows of the matrix B.
  65. *> If TRANS = 'C', the number of rows of the matrix X.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The number of columns of the matrix A.
  72. *> If TRANS = 'N', the number of rows of the matrix X.
  73. *> If TRANS = 'C', the number of rows of the matrix B.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] NRHS
  77. *> \verbatim
  78. *> NRHS is INTEGER
  79. *> The number of columns of the matrices X and B.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] A
  83. *> \verbatim
  84. *> A is COMPLEX*16 array, dimension (LDA,N)
  85. *> The m-by-n matrix A.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] LDA
  89. *> \verbatim
  90. *> LDA is INTEGER
  91. *> The leading dimension of the array A. LDA >= M.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] X
  95. *> \verbatim
  96. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  97. *> If TRANS = 'N', the n-by-nrhs matrix X.
  98. *> If TRANS = 'C', the m-by-nrhs matrix X.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDX
  102. *> \verbatim
  103. *> LDX is INTEGER
  104. *> The leading dimension of the array X.
  105. *> If TRANS = 'N', LDX >= N.
  106. *> If TRANS = 'C', LDX >= M.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] B
  110. *> \verbatim
  111. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  112. *> If TRANS = 'N', the m-by-nrhs matrix B.
  113. *> If TRANS = 'C', the n-by-nrhs matrix B.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDB
  117. *> \verbatim
  118. *> LDB is INTEGER
  119. *> The leading dimension of the array B.
  120. *> If TRANS = 'N', LDB >= M.
  121. *> If TRANS = 'C', LDB >= N.
  122. *> \endverbatim
  123. *>
  124. *> \param[out] C
  125. *> \verbatim
  126. *> C is COMPLEX*16 array, dimension (LDB,NRHS)
  127. *> \endverbatim
  128. *>
  129. *> \param[out] WORK
  130. *> \verbatim
  131. *> WORK is COMPLEX*16 array, dimension (LWORK)
  132. *> \endverbatim
  133. *>
  134. *> \param[in] LWORK
  135. *> \verbatim
  136. *> LWORK is INTEGER
  137. *> The length of the array WORK. LWORK >= NRHS*(M+N).
  138. *> \endverbatim
  139. *
  140. * Authors:
  141. * ========
  142. *
  143. *> \author Univ. of Tennessee
  144. *> \author Univ. of California Berkeley
  145. *> \author Univ. of Colorado Denver
  146. *> \author NAG Ltd.
  147. *
  148. *> \ingroup complex16_lin
  149. *
  150. * =====================================================================
  151. DOUBLE PRECISION FUNCTION ZQRT17( TRANS, IRESID, M, N, NRHS, A,
  152. $ LDA, X, LDX, B, LDB, C, WORK, LWORK )
  153. *
  154. * -- LAPACK test routine --
  155. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  156. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  157. *
  158. * .. Scalar Arguments ..
  159. CHARACTER TRANS
  160. INTEGER IRESID, LDA, LDB, LDX, LWORK, M, N, NRHS
  161. * ..
  162. * .. Array Arguments ..
  163. COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDB, * ),
  164. $ WORK( LWORK ), X( LDX, * )
  165. * ..
  166. *
  167. * =====================================================================
  168. *
  169. * .. Parameters ..
  170. DOUBLE PRECISION ZERO, ONE
  171. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  172. * ..
  173. * .. Local Scalars ..
  174. INTEGER INFO, ISCL, NCOLS, NROWS
  175. DOUBLE PRECISION ERR, NORMA, NORMB, NORMRS, SMLNUM
  176. * ..
  177. * .. Local Arrays ..
  178. DOUBLE PRECISION RWORK( 1 )
  179. * ..
  180. * .. External Functions ..
  181. LOGICAL LSAME
  182. DOUBLE PRECISION DLAMCH, ZLANGE
  183. EXTERNAL LSAME, DLAMCH, ZLANGE
  184. * ..
  185. * .. External Subroutines ..
  186. EXTERNAL XERBLA, ZGEMM, ZLACPY, ZLASCL
  187. * ..
  188. * .. Intrinsic Functions ..
  189. INTRINSIC DBLE, DCMPLX, MAX
  190. * ..
  191. * .. Executable Statements ..
  192. *
  193. ZQRT17 = ZERO
  194. *
  195. IF( LSAME( TRANS, 'N' ) ) THEN
  196. NROWS = M
  197. NCOLS = N
  198. ELSE IF( LSAME( TRANS, 'C' ) ) THEN
  199. NROWS = N
  200. NCOLS = M
  201. ELSE
  202. CALL XERBLA( 'ZQRT17', 1 )
  203. RETURN
  204. END IF
  205. *
  206. IF( LWORK.LT.NCOLS*NRHS ) THEN
  207. CALL XERBLA( 'ZQRT17', 13 )
  208. RETURN
  209. END IF
  210. *
  211. IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 )
  212. $ RETURN
  213. *
  214. NORMA = ZLANGE( 'One-norm', M, N, A, LDA, RWORK )
  215. SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  216. ISCL = 0
  217. *
  218. * compute residual and scale it
  219. *
  220. CALL ZLACPY( 'All', NROWS, NRHS, B, LDB, C, LDB )
  221. CALL ZGEMM( TRANS, 'No transpose', NROWS, NRHS, NCOLS,
  222. $ DCMPLX( -ONE ), A, LDA, X, LDX, DCMPLX( ONE ), C,
  223. $ LDB )
  224. NORMRS = ZLANGE( 'Max', NROWS, NRHS, C, LDB, RWORK )
  225. IF( NORMRS.GT.SMLNUM ) THEN
  226. ISCL = 1
  227. CALL ZLASCL( 'General', 0, 0, NORMRS, ONE, NROWS, NRHS, C, LDB,
  228. $ INFO )
  229. END IF
  230. *
  231. * compute R**H * op(A)
  232. *
  233. CALL ZGEMM( 'Conjugate transpose', TRANS, NRHS, NCOLS, NROWS,
  234. $ DCMPLX( ONE ), C, LDB, A, LDA, DCMPLX( ZERO ), WORK,
  235. $ NRHS )
  236. *
  237. * compute and properly scale error
  238. *
  239. ERR = ZLANGE( 'One-norm', NRHS, NCOLS, WORK, NRHS, RWORK )
  240. IF( NORMA.NE.ZERO )
  241. $ ERR = ERR / NORMA
  242. *
  243. IF( ISCL.EQ.1 )
  244. $ ERR = ERR*NORMRS
  245. *
  246. IF( IRESID.EQ.1 ) THEN
  247. NORMB = ZLANGE( 'One-norm', NROWS, NRHS, B, LDB, RWORK )
  248. IF( NORMB.NE.ZERO )
  249. $ ERR = ERR / NORMB
  250. ELSE
  251. IF( NORMRS.NE.ZERO )
  252. $ ERR = ERR / NORMRS
  253. END IF
  254. *
  255. ZQRT17 = ERR / ( DLAMCH( 'Epsilon' )*DBLE( MAX( M, N, NRHS ) ) )
  256. RETURN
  257. *
  258. * End of ZQRT17
  259. *
  260. END