You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlavsy_rook.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. *> \brief \b ZLAVSY_ROOK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZLAVSY_ROOK( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
  12. * LDB, INFO )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER DIAG, TRANS, UPLO
  16. * INTEGER INFO, LDA, LDB, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * COMPLEX*16 A( LDA, * ), B( LDB, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> ZLAVSY_ROOK performs one of the matrix-vector operations
  30. *> x := A*x or x := A'*x,
  31. *> where x is an N element vector and A is one of the factors
  32. *> from the block U*D*U' or L*D*L' factorization computed by ZSYTRF_ROOK.
  33. *>
  34. *> If TRANS = 'N', multiplies by U or U * D (or L or L * D)
  35. *> If TRANS = 'T', multiplies by U' or D * U' (or L' or D * L')
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] UPLO
  42. *> \verbatim
  43. *> UPLO is CHARACTER*1
  44. *> Specifies whether the factor stored in A is upper or lower
  45. *> triangular.
  46. *> = 'U': Upper triangular
  47. *> = 'L': Lower triangular
  48. *> \endverbatim
  49. *>
  50. *> \param[in] TRANS
  51. *> \verbatim
  52. *> TRANS is CHARACTER*1
  53. *> Specifies the operation to be performed:
  54. *> = 'N': x := A*x
  55. *> = 'T': x := A'*x
  56. *> \endverbatim
  57. *>
  58. *> \param[in] DIAG
  59. *> \verbatim
  60. *> DIAG is CHARACTER*1
  61. *> Specifies whether or not the diagonal blocks are unit
  62. *> matrices. If the diagonal blocks are assumed to be unit,
  63. *> then A = U or A = L, otherwise A = U*D or A = L*D.
  64. *> = 'U': Diagonal blocks are assumed to be unit matrices.
  65. *> = 'N': Diagonal blocks are assumed to be non-unit matrices.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The number of rows and columns of the matrix A. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] NRHS
  75. *> \verbatim
  76. *> NRHS is INTEGER
  77. *> The number of right hand sides, i.e., the number of vectors
  78. *> x to be multiplied by A. NRHS >= 0.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] A
  82. *> \verbatim
  83. *> A is COMPLEX*16 array, dimension (LDA,N)
  84. *> The block diagonal matrix D and the multipliers used to
  85. *> obtain the factor U or L as computed by ZSYTRF_ROOK.
  86. *> Stored as a 2-D triangular matrix.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in] IPIV
  96. *> \verbatim
  97. *> IPIV is INTEGER array, dimension (N)
  98. *> Details of the interchanges and the block structure of D,
  99. *> as determined by ZSYTRF_ROOK.
  100. *>
  101. *> If UPLO = 'U':
  102. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  103. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  104. *> (If IPIV( k ) = k, no interchange was done).
  105. *>
  106. *> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  107. *> columns k and -IPIV(k) were interchanged and rows and
  108. *> columns k-1 and -IPIV(k-1) were inerchaged,
  109. *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  110. *>
  111. *> If UPLO = 'L':
  112. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  113. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  114. *> (If IPIV( k ) = k, no interchange was done).
  115. *>
  116. *> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  117. *> columns k and -IPIV(k) were interchanged and rows and
  118. *> columns k+1 and -IPIV(k+1) were inerchaged,
  119. *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  120. *> \endverbatim
  121. *>
  122. *> \param[in,out] B
  123. *> \verbatim
  124. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  125. *> On entry, B contains NRHS vectors of length N.
  126. *> On exit, B is overwritten with the product A * B.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDB
  130. *> \verbatim
  131. *> LDB is INTEGER
  132. *> The leading dimension of the array B. LDB >= max(1,N).
  133. *> \endverbatim
  134. *>
  135. *> \param[out] INFO
  136. *> \verbatim
  137. *> INFO is INTEGER
  138. *> = 0: successful exit
  139. *> < 0: if INFO = -k, the k-th argument had an illegal value
  140. *> \endverbatim
  141. *
  142. * Authors:
  143. * ========
  144. *
  145. *> \author Univ. of Tennessee
  146. *> \author Univ. of California Berkeley
  147. *> \author Univ. of Colorado Denver
  148. *> \author NAG Ltd.
  149. *
  150. *> \ingroup complex16_lin
  151. *
  152. * =====================================================================
  153. SUBROUTINE ZLAVSY_ROOK( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV,
  154. $ B, LDB, INFO )
  155. *
  156. * -- LAPACK test routine --
  157. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  158. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  159. *
  160. * .. Scalar Arguments ..
  161. CHARACTER DIAG, TRANS, UPLO
  162. INTEGER INFO, LDA, LDB, N, NRHS
  163. * ..
  164. * .. Array Arguments ..
  165. INTEGER IPIV( * )
  166. COMPLEX*16 A( LDA, * ), B( LDB, * )
  167. * ..
  168. *
  169. * =====================================================================
  170. *
  171. * .. Parameters ..
  172. COMPLEX*16 CONE
  173. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  174. * ..
  175. * .. Local Scalars ..
  176. LOGICAL NOUNIT
  177. INTEGER J, K, KP
  178. COMPLEX*16 D11, D12, D21, D22, T1, T2
  179. * ..
  180. * .. External Functions ..
  181. LOGICAL LSAME
  182. EXTERNAL LSAME
  183. * ..
  184. * .. External Subroutines ..
  185. EXTERNAL XERBLA, ZGEMV, ZGERU, ZSCAL, ZSWAP
  186. * ..
  187. * .. Intrinsic Functions ..
  188. INTRINSIC ABS, MAX
  189. * ..
  190. * .. Executable Statements ..
  191. *
  192. * Test the input parameters.
  193. *
  194. INFO = 0
  195. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  196. INFO = -1
  197. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
  198. $ THEN
  199. INFO = -2
  200. ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
  201. $ THEN
  202. INFO = -3
  203. ELSE IF( N.LT.0 ) THEN
  204. INFO = -4
  205. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  206. INFO = -6
  207. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  208. INFO = -9
  209. END IF
  210. IF( INFO.NE.0 ) THEN
  211. CALL XERBLA( 'ZLAVSY_ROOK ', -INFO )
  212. RETURN
  213. END IF
  214. *
  215. * Quick return if possible.
  216. *
  217. IF( N.EQ.0 )
  218. $ RETURN
  219. *
  220. NOUNIT = LSAME( DIAG, 'N' )
  221. *------------------------------------------
  222. *
  223. * Compute B := A * B (No transpose)
  224. *
  225. *------------------------------------------
  226. IF( LSAME( TRANS, 'N' ) ) THEN
  227. *
  228. * Compute B := U*B
  229. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  230. *
  231. IF( LSAME( UPLO, 'U' ) ) THEN
  232. *
  233. * Loop forward applying the transformations.
  234. *
  235. K = 1
  236. 10 CONTINUE
  237. IF( K.GT.N )
  238. $ GO TO 30
  239. IF( IPIV( K ).GT.0 ) THEN
  240. *
  241. * 1 x 1 pivot block
  242. *
  243. * Multiply by the diagonal element if forming U * D.
  244. *
  245. IF( NOUNIT )
  246. $ CALL ZSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  247. *
  248. * Multiply by P(K) * inv(U(K)) if K > 1.
  249. *
  250. IF( K.GT.1 ) THEN
  251. *
  252. * Apply the transformation.
  253. *
  254. CALL ZGERU( K-1, NRHS, CONE, A( 1, K ), 1, B( K, 1 ),
  255. $ LDB, B( 1, 1 ), LDB )
  256. *
  257. * Interchange if P(K) != I.
  258. *
  259. KP = IPIV( K )
  260. IF( KP.NE.K )
  261. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  262. END IF
  263. K = K + 1
  264. ELSE
  265. *
  266. * 2 x 2 pivot block
  267. *
  268. * Multiply by the diagonal block if forming U * D.
  269. *
  270. IF( NOUNIT ) THEN
  271. D11 = A( K, K )
  272. D22 = A( K+1, K+1 )
  273. D12 = A( K, K+1 )
  274. D21 = D12
  275. DO 20 J = 1, NRHS
  276. T1 = B( K, J )
  277. T2 = B( K+1, J )
  278. B( K, J ) = D11*T1 + D12*T2
  279. B( K+1, J ) = D21*T1 + D22*T2
  280. 20 CONTINUE
  281. END IF
  282. *
  283. * Multiply by P(K) * inv(U(K)) if K > 1.
  284. *
  285. IF( K.GT.1 ) THEN
  286. *
  287. * Apply the transformations.
  288. *
  289. CALL ZGERU( K-1, NRHS, CONE, A( 1, K ), 1, B( K, 1 ),
  290. $ LDB, B( 1, 1 ), LDB )
  291. CALL ZGERU( K-1, NRHS, CONE, A( 1, K+1 ), 1,
  292. $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
  293. *
  294. * Interchange if a permutation was applied at the
  295. * K-th step of the factorization.
  296. *
  297. * Swap the first of pair with IMAXth
  298. *
  299. KP = ABS( IPIV( K ) )
  300. IF( KP.NE.K )
  301. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  302. *
  303. * NOW swap the first of pair with Pth
  304. *
  305. KP = ABS( IPIV( K+1 ) )
  306. IF( KP.NE.K+1 )
  307. $ CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  308. $ LDB )
  309. END IF
  310. K = K + 2
  311. END IF
  312. GO TO 10
  313. 30 CONTINUE
  314. *
  315. * Compute B := L*B
  316. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
  317. *
  318. ELSE
  319. *
  320. * Loop backward applying the transformations to B.
  321. *
  322. K = N
  323. 40 CONTINUE
  324. IF( K.LT.1 )
  325. $ GO TO 60
  326. *
  327. * Test the pivot index. If greater than zero, a 1 x 1
  328. * pivot was used, otherwise a 2 x 2 pivot was used.
  329. *
  330. IF( IPIV( K ).GT.0 ) THEN
  331. *
  332. * 1 x 1 pivot block:
  333. *
  334. * Multiply by the diagonal element if forming L * D.
  335. *
  336. IF( NOUNIT )
  337. $ CALL ZSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  338. *
  339. * Multiply by P(K) * inv(L(K)) if K < N.
  340. *
  341. IF( K.NE.N ) THEN
  342. KP = IPIV( K )
  343. *
  344. * Apply the transformation.
  345. *
  346. CALL ZGERU( N-K, NRHS, CONE, A( K+1, K ), 1,
  347. $ B( K, 1 ), LDB, B( K+1, 1 ), LDB )
  348. *
  349. * Interchange if a permutation was applied at the
  350. * K-th step of the factorization.
  351. *
  352. IF( KP.NE.K )
  353. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  354. END IF
  355. K = K - 1
  356. *
  357. ELSE
  358. *
  359. * 2 x 2 pivot block:
  360. *
  361. * Multiply by the diagonal block if forming L * D.
  362. *
  363. IF( NOUNIT ) THEN
  364. D11 = A( K-1, K-1 )
  365. D22 = A( K, K )
  366. D21 = A( K, K-1 )
  367. D12 = D21
  368. DO 50 J = 1, NRHS
  369. T1 = B( K-1, J )
  370. T2 = B( K, J )
  371. B( K-1, J ) = D11*T1 + D12*T2
  372. B( K, J ) = D21*T1 + D22*T2
  373. 50 CONTINUE
  374. END IF
  375. *
  376. * Multiply by P(K) * inv(L(K)) if K < N.
  377. *
  378. IF( K.NE.N ) THEN
  379. *
  380. * Apply the transformation.
  381. *
  382. CALL ZGERU( N-K, NRHS, CONE, A( K+1, K ), 1,
  383. $ B( K, 1 ), LDB, B( K+1, 1 ), LDB )
  384. CALL ZGERU( N-K, NRHS, CONE, A( K+1, K-1 ), 1,
  385. $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
  386. *
  387. * Interchange if a permutation was applied at the
  388. * K-th step of the factorization.
  389. *
  390. * Swap the second of pair with IMAXth
  391. *
  392. KP = ABS( IPIV( K ) )
  393. IF( KP.NE.K )
  394. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  395. *
  396. * NOW swap the first of pair with Pth
  397. *
  398. KP = ABS( IPIV( K-1 ) )
  399. IF( KP.NE.K-1 )
  400. $ CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  401. $ LDB )
  402. END IF
  403. K = K - 2
  404. END IF
  405. GO TO 40
  406. 60 CONTINUE
  407. END IF
  408. *----------------------------------------
  409. *
  410. * Compute B := A' * B (transpose)
  411. *
  412. *----------------------------------------
  413. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  414. *
  415. * Form B := U'*B
  416. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  417. * and U' = inv(U'(1))*P(1)* ... *inv(U'(m))*P(m)
  418. *
  419. IF( LSAME( UPLO, 'U' ) ) THEN
  420. *
  421. * Loop backward applying the transformations.
  422. *
  423. K = N
  424. 70 CONTINUE
  425. IF( K.LT.1 )
  426. $ GO TO 90
  427. *
  428. * 1 x 1 pivot block.
  429. *
  430. IF( IPIV( K ).GT.0 ) THEN
  431. IF( K.GT.1 ) THEN
  432. *
  433. * Interchange if P(K) != I.
  434. *
  435. KP = IPIV( K )
  436. IF( KP.NE.K )
  437. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  438. *
  439. * Apply the transformation
  440. *
  441. CALL ZGEMV( 'Transpose', K-1, NRHS, CONE, B, LDB,
  442. $ A( 1, K ), 1, CONE, B( K, 1 ), LDB )
  443. END IF
  444. IF( NOUNIT )
  445. $ CALL ZSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  446. K = K - 1
  447. *
  448. * 2 x 2 pivot block.
  449. *
  450. ELSE
  451. IF( K.GT.2 ) THEN
  452. *
  453. * Swap the second of pair with Pth
  454. *
  455. KP = ABS( IPIV( K ) )
  456. IF( KP.NE.K )
  457. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  458. *
  459. * Now swap the first of pair with IMAX(r)th
  460. *
  461. KP = ABS( IPIV( K-1 ) )
  462. IF( KP.NE.K-1 )
  463. $ CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  464. $ LDB )
  465. *
  466. * Apply the transformations
  467. *
  468. CALL ZGEMV( 'Transpose', K-2, NRHS, CONE, B, LDB,
  469. $ A( 1, K ), 1, CONE, B( K, 1 ), LDB )
  470. CALL ZGEMV( 'Transpose', K-2, NRHS, CONE, B, LDB,
  471. $ A( 1, K-1 ), 1, CONE, B( K-1, 1 ), LDB )
  472. END IF
  473. *
  474. * Multiply by the diagonal block if non-unit.
  475. *
  476. IF( NOUNIT ) THEN
  477. D11 = A( K-1, K-1 )
  478. D22 = A( K, K )
  479. D12 = A( K-1, K )
  480. D21 = D12
  481. DO 80 J = 1, NRHS
  482. T1 = B( K-1, J )
  483. T2 = B( K, J )
  484. B( K-1, J ) = D11*T1 + D12*T2
  485. B( K, J ) = D21*T1 + D22*T2
  486. 80 CONTINUE
  487. END IF
  488. K = K - 2
  489. END IF
  490. GO TO 70
  491. 90 CONTINUE
  492. *
  493. * Form B := L'*B
  494. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
  495. * and L' = inv(L'(m))*P(m)* ... *inv(L'(1))*P(1)
  496. *
  497. ELSE
  498. *
  499. * Loop forward applying the L-transformations.
  500. *
  501. K = 1
  502. 100 CONTINUE
  503. IF( K.GT.N )
  504. $ GO TO 120
  505. *
  506. * 1 x 1 pivot block
  507. *
  508. IF( IPIV( K ).GT.0 ) THEN
  509. IF( K.LT.N ) THEN
  510. *
  511. * Interchange if P(K) != I.
  512. *
  513. KP = IPIV( K )
  514. IF( KP.NE.K )
  515. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  516. *
  517. * Apply the transformation
  518. *
  519. CALL ZGEMV( 'Transpose', N-K, NRHS, CONE, B( K+1, 1 ),
  520. $ LDB, A( K+1, K ), 1, CONE, B( K, 1 ), LDB )
  521. END IF
  522. IF( NOUNIT )
  523. $ CALL ZSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  524. K = K + 1
  525. *
  526. * 2 x 2 pivot block.
  527. *
  528. ELSE
  529. IF( K.LT.N-1 ) THEN
  530. *
  531. * Swap the first of pair with Pth
  532. *
  533. KP = ABS( IPIV( K ) )
  534. IF( KP.NE.K )
  535. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  536. *
  537. * Now swap the second of pair with IMAX(r)th
  538. *
  539. KP = ABS( IPIV( K+1 ) )
  540. IF( KP.NE.K+1 )
  541. $ CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  542. $ LDB )
  543. *
  544. * Apply the transformation
  545. *
  546. CALL ZGEMV( 'Transpose', N-K-1, NRHS, CONE,
  547. $ B( K+2, 1 ), LDB, A( K+2, K+1 ), 1, CONE,
  548. $ B( K+1, 1 ), LDB )
  549. CALL ZGEMV( 'Transpose', N-K-1, NRHS, CONE,
  550. $ B( K+2, 1 ), LDB, A( K+2, K ), 1, CONE,
  551. $ B( K, 1 ), LDB )
  552. END IF
  553. *
  554. * Multiply by the diagonal block if non-unit.
  555. *
  556. IF( NOUNIT ) THEN
  557. D11 = A( K, K )
  558. D22 = A( K+1, K+1 )
  559. D21 = A( K+1, K )
  560. D12 = D21
  561. DO 110 J = 1, NRHS
  562. T1 = B( K, J )
  563. T2 = B( K+1, J )
  564. B( K, J ) = D11*T1 + D12*T2
  565. B( K+1, J ) = D21*T1 + D22*T2
  566. 110 CONTINUE
  567. END IF
  568. K = K + 2
  569. END IF
  570. GO TO 100
  571. 120 CONTINUE
  572. END IF
  573. END IF
  574. RETURN
  575. *
  576. * End of ZLAVSY_ROOK
  577. *
  578. END