|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555 |
- *> \brief \b ZCHKGT
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
- * A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NN, NNS, NOUT
- * DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 A( * ), AF( * ), B( * ), WORK( * ), X( * ),
- * $ XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZCHKGT tests ZGTTRF, -TRS, -RFS, and -CON
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NNS
- *> \verbatim
- *> NNS is INTEGER
- *> The number of values of NRHS contained in the vector NSVAL.
- *> \endverbatim
- *>
- *> \param[in] NSVAL
- *> \verbatim
- *> NSVAL is INTEGER array, dimension (NNS)
- *> The values of the number of right hand sides NRHS.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (NMAX*4)
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is COMPLEX*16 array, dimension (NMAX*4)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (NMAX*NSMAX)
- *> where NSMAX is the largest entry in NSVAL.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (NMAX*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension
- *> (NMAX*max(3,NSMAX))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension
- *> (max(NMAX)+2*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (NMAX)
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
- $ A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NN, NNS, NOUT
- DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 A( * ), AF( * ), B( * ), WORK( * ), X( * ),
- $ XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- INTEGER NTYPES
- PARAMETER ( NTYPES = 12 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 7 )
- * ..
- * .. Local Scalars ..
- LOGICAL TRFCON, ZEROT
- CHARACTER DIST, NORM, TRANS, TYPE
- CHARACTER*3 PATH
- INTEGER I, IMAT, IN, INFO, IRHS, ITRAN, IX, IZERO, J,
- $ K, KL, KOFF, KU, LDA, M, MODE, N, NERRS, NFAIL,
- $ NIMAT, NRHS, NRUN
- DOUBLE PRECISION AINVNM, ANORM, COND, RCOND, RCONDC, RCONDI,
- $ RCONDO
- * ..
- * .. Local Arrays ..
- CHARACTER TRANSS( 3 )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- DOUBLE PRECISION RESULT( NTESTS )
- COMPLEX*16 Z( 3 )
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DGET06, DZASUM, ZLANGT
- EXTERNAL DGET06, DZASUM, ZLANGT
- * ..
- * .. External Subroutines ..
- EXTERNAL ALAERH, ALAHD, ALASUM, ZCOPY, ZDSCAL, ZERRGE,
- $ ZGET04, ZGTCON, ZGTRFS, ZGTT01, ZGTT02, ZGTT05,
- $ ZGTTRF, ZGTTRS, ZLACPY, ZLAGTM, ZLARNV, ZLATB4,
- $ ZLATMS
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
- $ 'C' /
- * ..
- * .. Executable Statements ..
- *
- PATH( 1: 1 ) = 'Zomplex precision'
- PATH( 2: 3 ) = 'GT'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL ZERRGE( PATH, NOUT )
- INFOT = 0
- *
- DO 110 IN = 1, NN
- *
- * Do for each value of N in NVAL.
- *
- N = NVAL( IN )
- M = MAX( N-1, 0 )
- LDA = MAX( 1, N )
- NIMAT = NTYPES
- IF( N.LE.0 )
- $ NIMAT = 1
- *
- DO 100 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 100
- *
- * Set up parameters with ZLATB4.
- *
- CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
- $ COND, DIST )
- *
- ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
- IF( IMAT.LE.6 ) THEN
- *
- * Types 1-6: generate matrices of known condition number.
- *
- KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
- SRNAMT = 'ZLATMS'
- CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
- $ ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
- $ INFO )
- *
- * Check the error code from ZLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N, KL,
- $ KU, -1, IMAT, NFAIL, NERRS, NOUT )
- GO TO 100
- END IF
- IZERO = 0
- *
- IF( N.GT.1 ) THEN
- CALL ZCOPY( N-1, AF( 4 ), 3, A, 1 )
- CALL ZCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
- END IF
- CALL ZCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
- ELSE
- *
- * Types 7-12: generate tridiagonal matrices with
- * unknown condition numbers.
- *
- IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
- *
- * Generate a matrix with elements whose real and
- * imaginary parts are from [-1,1].
- *
- CALL ZLARNV( 2, ISEED, N+2*M, A )
- IF( ANORM.NE.ONE )
- $ CALL ZDSCAL( N+2*M, ANORM, A, 1 )
- ELSE IF( IZERO.GT.0 ) THEN
- *
- * Reuse the last matrix by copying back the zeroed out
- * elements.
- *
- IF( IZERO.EQ.1 ) THEN
- A( N ) = Z( 2 )
- IF( N.GT.1 )
- $ A( 1 ) = Z( 3 )
- ELSE IF( IZERO.EQ.N ) THEN
- A( 3*N-2 ) = Z( 1 )
- A( 2*N-1 ) = Z( 2 )
- ELSE
- A( 2*N-2+IZERO ) = Z( 1 )
- A( N-1+IZERO ) = Z( 2 )
- A( IZERO ) = Z( 3 )
- END IF
- END IF
- *
- * If IMAT > 7, set one column of the matrix to 0.
- *
- IF( .NOT.ZEROT ) THEN
- IZERO = 0
- ELSE IF( IMAT.EQ.8 ) THEN
- IZERO = 1
- Z( 2 ) = A( N )
- A( N ) = ZERO
- IF( N.GT.1 ) THEN
- Z( 3 ) = A( 1 )
- A( 1 ) = ZERO
- END IF
- ELSE IF( IMAT.EQ.9 ) THEN
- IZERO = N
- Z( 1 ) = A( 3*N-2 )
- Z( 2 ) = A( 2*N-1 )
- A( 3*N-2 ) = ZERO
- A( 2*N-1 ) = ZERO
- ELSE
- IZERO = ( N+1 ) / 2
- DO 20 I = IZERO, N - 1
- A( 2*N-2+I ) = ZERO
- A( N-1+I ) = ZERO
- A( I ) = ZERO
- 20 CONTINUE
- A( 3*N-2 ) = ZERO
- A( 2*N-1 ) = ZERO
- END IF
- END IF
- *
- *+ TEST 1
- * Factor A as L*U and compute the ratio
- * norm(L*U - A) / (n * norm(A) * EPS )
- *
- CALL ZCOPY( N+2*M, A, 1, AF, 1 )
- SRNAMT = 'ZGTTRF'
- CALL ZGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
- $ IWORK, INFO )
- *
- * Check error code from ZGTTRF.
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'ZGTTRF', INFO, IZERO, ' ', N, N, 1,
- $ 1, -1, IMAT, NFAIL, NERRS, NOUT )
- TRFCON = INFO.NE.0
- *
- CALL ZGTT01( N, A, A( M+1 ), A( N+M+1 ), AF, AF( M+1 ),
- $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, WORK, LDA,
- $ RWORK, RESULT( 1 ) )
- *
- * Print the test ratio if it is .GE. THRESH.
- *
- IF( RESULT( 1 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 )
- NFAIL = NFAIL + 1
- END IF
- NRUN = NRUN + 1
- *
- DO 50 ITRAN = 1, 2
- TRANS = TRANSS( ITRAN )
- IF( ITRAN.EQ.1 ) THEN
- NORM = 'O'
- ELSE
- NORM = 'I'
- END IF
- ANORM = ZLANGT( NORM, N, A, A( M+1 ), A( N+M+1 ) )
- *
- IF( .NOT.TRFCON ) THEN
- *
- * Use ZGTTRS to solve for one column at a time of
- * inv(A), computing the maximum column sum as we go.
- *
- AINVNM = ZERO
- DO 40 I = 1, N
- DO 30 J = 1, N
- X( J ) = ZERO
- 30 CONTINUE
- X( I ) = ONE
- CALL ZGTTRS( TRANS, N, 1, AF, AF( M+1 ),
- $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
- $ LDA, INFO )
- AINVNM = MAX( AINVNM, DZASUM( N, X, 1 ) )
- 40 CONTINUE
- *
- * Compute RCONDC = 1 / (norm(A) * norm(inv(A))
- *
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDC = ONE
- ELSE
- RCONDC = ( ONE / ANORM ) / AINVNM
- END IF
- IF( ITRAN.EQ.1 ) THEN
- RCONDO = RCONDC
- ELSE
- RCONDI = RCONDC
- END IF
- ELSE
- RCONDC = ZERO
- END IF
- *
- *+ TEST 7
- * Estimate the reciprocal of the condition number of the
- * matrix.
- *
- SRNAMT = 'ZGTCON'
- CALL ZGTCON( NORM, N, AF, AF( M+1 ), AF( N+M+1 ),
- $ AF( N+2*M+1 ), IWORK, ANORM, RCOND, WORK,
- $ INFO )
- *
- * Check error code from ZGTCON.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'ZGTCON', INFO, 0, NORM, N, N, -1,
- $ -1, -1, IMAT, NFAIL, NERRS, NOUT )
- *
- RESULT( 7 ) = DGET06( RCOND, RCONDC )
- *
- * Print the test ratio if it is .GE. THRESH.
- *
- IF( RESULT( 7 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9997 )NORM, N, IMAT, 7,
- $ RESULT( 7 )
- NFAIL = NFAIL + 1
- END IF
- NRUN = NRUN + 1
- 50 CONTINUE
- *
- * Skip the remaining tests if the matrix is singular.
- *
- IF( TRFCON )
- $ GO TO 100
- *
- DO 90 IRHS = 1, NNS
- NRHS = NSVAL( IRHS )
- *
- * Generate NRHS random solution vectors.
- *
- IX = 1
- DO 60 J = 1, NRHS
- CALL ZLARNV( 2, ISEED, N, XACT( IX ) )
- IX = IX + LDA
- 60 CONTINUE
- *
- DO 80 ITRAN = 1, 3
- TRANS = TRANSS( ITRAN )
- IF( ITRAN.EQ.1 ) THEN
- RCONDC = RCONDO
- ELSE
- RCONDC = RCONDI
- END IF
- *
- * Set the right hand side.
- *
- CALL ZLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
- $ A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
- *
- *+ TEST 2
- * Solve op(A) * X = B and compute the residual.
- *
- CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
- SRNAMT = 'ZGTTRS'
- CALL ZGTTRS( TRANS, N, NRHS, AF, AF( M+1 ),
- $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
- $ LDA, INFO )
- *
- * Check error code from ZGTTRS.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'ZGTTRS', INFO, 0, TRANS, N, N,
- $ -1, -1, NRHS, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
- CALL ZGTT02( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
- $ X, LDA, WORK, LDA, RESULT( 2 ) )
- *
- *+ TEST 3
- * Check solution from generated exact solution.
- *
- CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- *
- *+ TESTS 4, 5, and 6
- * Use iterative refinement to improve the solution.
- *
- SRNAMT = 'ZGTRFS'
- CALL ZGTRFS( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
- $ AF, AF( M+1 ), AF( N+M+1 ),
- $ AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
- $ RWORK, RWORK( NRHS+1 ), WORK,
- $ RWORK( 2*NRHS+1 ), INFO )
- *
- * Check error code from ZGTRFS.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'ZGTRFS', INFO, 0, TRANS, N, N,
- $ -1, -1, NRHS, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 4 ) )
- CALL ZGTT05( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
- $ B, LDA, X, LDA, XACT, LDA, RWORK,
- $ RWORK( NRHS+1 ), RESULT( 5 ) )
- *
- * Print information about the tests that did not pass the
- * threshold.
- *
- DO 70 K = 2, 6
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )TRANS, N, NRHS, IMAT,
- $ K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 70 CONTINUE
- NRUN = NRUN + 5
- 80 CONTINUE
- 90 CONTINUE
- 100 CONTINUE
- 110 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( 12X, 'N =', I5, ',', 10X, ' type ', I2, ', test(', I2,
- $ ') = ', G12.5 )
- 9998 FORMAT( ' TRANS=''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
- $ I2, ', test(', I2, ') = ', G12.5 )
- 9997 FORMAT( ' NORM =''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
- $ ', test(', I2, ') = ', G12.5 )
- RETURN
- *
- * End of ZCHKGT
- *
- END
|