You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssyt01_aa.f 7.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. *> \brief \b SSYT01_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SSYT01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV,
  12. * C, LDC, RWORK, RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER LDA, LDAFAC, LDC, N
  17. * REAL RESID
  18. * ..
  19. * .. Array Arguments ..
  20. * INTEGER IPIV( * )
  21. * REAL A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
  22. * $ RWORK( * )
  23. * ..
  24. *
  25. *
  26. *> \par Purpose:
  27. * =============
  28. *>
  29. *> \verbatim
  30. *>
  31. *> SSYT01_AA reconstructs a symmetric indefinite matrix A from its
  32. *> block L*D*L' or U*D*U' factorization and computes the residual
  33. *> norm( C - A ) / ( N * norm(A) * EPS ),
  34. *> where C is the reconstructed matrix and EPS is the machine epsilon.
  35. *> \endverbatim
  36. *
  37. * Arguments:
  38. * ==========
  39. *
  40. *> \param[in] UPLO
  41. *> \verbatim
  42. *> UPLO is CHARACTER*1
  43. *> Specifies whether the upper or lower triangular part of the
  44. *> symmetric matrix A is stored:
  45. *> = 'U': Upper triangular
  46. *> = 'L': Lower triangular
  47. *> \endverbatim
  48. *>
  49. *> \param[in] N
  50. *> \verbatim
  51. *> N is INTEGER
  52. *> The number of rows and columns of the matrix A. N >= 0.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] A
  56. *> \verbatim
  57. *> A is REAL array, dimension (LDA,N)
  58. *> The original symmetric matrix A.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] LDA
  62. *> \verbatim
  63. *> LDA is INTEGER
  64. *> The leading dimension of the array A. LDA >= max(1,N)
  65. *> \endverbatim
  66. *>
  67. *> \param[in] AFAC
  68. *> \verbatim
  69. *> AFAC is REAL array, dimension (LDAFAC,N)
  70. *> The factored form of the matrix A. AFAC contains the block
  71. *> diagonal matrix D and the multipliers used to obtain the
  72. *> factor L or U from the block L*D*L' or U*D*U' factorization
  73. *> as computed by SSYTRF.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDAFAC
  77. *> \verbatim
  78. *> LDAFAC is INTEGER
  79. *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] IPIV
  83. *> \verbatim
  84. *> IPIV is INTEGER array, dimension (N)
  85. *> The pivot indices from SSYTRF.
  86. *> \endverbatim
  87. *>
  88. *> \param[out] C
  89. *> \verbatim
  90. *> C is REAL array, dimension (LDC,N)
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDC
  94. *> \verbatim
  95. *> LDC is INTEGER
  96. *> The leading dimension of the array C. LDC >= max(1,N).
  97. *> \endverbatim
  98. *>
  99. *> \param[out] RWORK
  100. *> \verbatim
  101. *> RWORK is REAL array, dimension (N)
  102. *> \endverbatim
  103. *>
  104. *> \param[out] RESID
  105. *> \verbatim
  106. *> RESID is REAL
  107. *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
  108. *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
  109. *> \endverbatim
  110. *
  111. * Authors:
  112. * ========
  113. *
  114. *> \author Univ. of Tennessee
  115. *> \author Univ. of California Berkeley
  116. *> \author Univ. of Colorado Denver
  117. *> \author NAG Ltd.
  118. *
  119. *> \ingroup real_lin
  120. *
  121. * =====================================================================
  122. SUBROUTINE SSYT01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
  123. $ LDC, RWORK, RESID )
  124. *
  125. * -- LAPACK test routine --
  126. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  127. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  128. *
  129. * .. Scalar Arguments ..
  130. CHARACTER UPLO
  131. INTEGER LDA, LDAFAC, LDC, N
  132. REAL RESID
  133. * ..
  134. * .. Array Arguments ..
  135. INTEGER IPIV( * )
  136. REAL A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
  137. $ RWORK( * )
  138. * ..
  139. *
  140. * =====================================================================
  141. *
  142. * .. Parameters ..
  143. REAL ZERO, ONE
  144. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  145. * ..
  146. * .. Local Scalars ..
  147. INTEGER I, J
  148. REAL ANORM, EPS
  149. * ..
  150. * .. External Functions ..
  151. LOGICAL LSAME
  152. REAL SLAMCH, SLANSY
  153. EXTERNAL LSAME, SLAMCH, SLANSY
  154. * ..
  155. * .. External Subroutines ..
  156. EXTERNAL SLASET, SLAVSY, SSWAP, STRMM, SLACPY
  157. * ..
  158. * .. Intrinsic Functions ..
  159. INTRINSIC DBLE
  160. * ..
  161. * .. Executable Statements ..
  162. *
  163. * Quick exit if N = 0.
  164. *
  165. IF( N.LE.0 ) THEN
  166. RESID = ZERO
  167. RETURN
  168. END IF
  169. *
  170. * Determine EPS and the norm of A.
  171. *
  172. EPS = SLAMCH( 'Epsilon' )
  173. ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
  174. *
  175. * Initialize C to the tridiagonal matrix T.
  176. *
  177. CALL SLASET( 'Full', N, N, ZERO, ZERO, C, LDC )
  178. CALL SLACPY( 'F', 1, N, AFAC( 1, 1 ), LDAFAC+1, C( 1, 1 ), LDC+1 )
  179. IF( N.GT.1 ) THEN
  180. IF( LSAME( UPLO, 'U' ) ) THEN
  181. CALL SLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 1, 2 ),
  182. $ LDC+1 )
  183. CALL SLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 2, 1 ),
  184. $ LDC+1 )
  185. ELSE
  186. CALL SLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 1, 2 ),
  187. $ LDC+1 )
  188. CALL SLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 2, 1 ),
  189. $ LDC+1 )
  190. ENDIF
  191. *
  192. * Call STRMM to form the product U' * D (or L * D ).
  193. *
  194. IF( LSAME( UPLO, 'U' ) ) THEN
  195. CALL STRMM( 'Left', UPLO, 'Transpose', 'Unit', N-1, N,
  196. $ ONE, AFAC( 1, 2 ), LDAFAC, C( 2, 1 ), LDC )
  197. ELSE
  198. CALL STRMM( 'Left', UPLO, 'No transpose', 'Unit', N-1, N,
  199. $ ONE, AFAC( 2, 1 ), LDAFAC, C( 2, 1 ), LDC )
  200. END IF
  201. *
  202. * Call STRMM again to multiply by U (or L ).
  203. *
  204. IF( LSAME( UPLO, 'U' ) ) THEN
  205. CALL STRMM( 'Right', UPLO, 'No transpose', 'Unit', N, N-1,
  206. $ ONE, AFAC( 1, 2 ), LDAFAC, C( 1, 2 ), LDC )
  207. ELSE
  208. CALL STRMM( 'Right', UPLO, 'Transpose', 'Unit', N, N-1,
  209. $ ONE, AFAC( 2, 1 ), LDAFAC, C( 1, 2 ), LDC )
  210. END IF
  211. ENDIF
  212. *
  213. * Apply symmetric pivots
  214. *
  215. DO J = N, 1, -1
  216. I = IPIV( J )
  217. IF( I.NE.J )
  218. $ CALL SSWAP( N, C( J, 1 ), LDC, C( I, 1 ), LDC )
  219. END DO
  220. DO J = N, 1, -1
  221. I = IPIV( J )
  222. IF( I.NE.J )
  223. $ CALL SSWAP( N, C( 1, J ), 1, C( 1, I ), 1 )
  224. END DO
  225. *
  226. *
  227. * Compute the difference C - A .
  228. *
  229. IF( LSAME( UPLO, 'U' ) ) THEN
  230. DO J = 1, N
  231. DO I = 1, J
  232. C( I, J ) = C( I, J ) - A( I, J )
  233. END DO
  234. END DO
  235. ELSE
  236. DO J = 1, N
  237. DO I = J, N
  238. C( I, J ) = C( I, J ) - A( I, J )
  239. END DO
  240. END DO
  241. END IF
  242. *
  243. * Compute norm( C - A ) / ( N * norm(A) * EPS )
  244. *
  245. RESID = SLANSY( '1', UPLO, N, C, LDC, RWORK )
  246. *
  247. IF( ANORM.LE.ZERO ) THEN
  248. IF( RESID.NE.ZERO )
  249. $ RESID = ONE / EPS
  250. ELSE
  251. RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
  252. END IF
  253. *
  254. RETURN
  255. *
  256. * End of SSYT01_AA
  257. *
  258. END