You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlavsy_rook.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. *> \brief \b DLAVSY_ROOK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DLAVSY_ROOK( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
  12. * LDB, INFO )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER DIAG, TRANS, UPLO
  16. * INTEGER INFO, LDA, LDB, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * DOUBLE PRECISION A( LDA, * ), B( LDB, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> DLAVSY_ROOK performs one of the matrix-vector operations
  30. *> x := A*x or x := A'*x,
  31. *> where x is an N element vector and A is one of the factors
  32. *> from the block U*D*U' or L*D*L' factorization computed by DSYTRF_ROOK.
  33. *>
  34. *> If TRANS = 'N', multiplies by U or U * D (or L or L * D)
  35. *> If TRANS = 'T', multiplies by U' or D * U' (or L' or D * L')
  36. *> If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L')
  37. *> \endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. *> \param[in] UPLO
  43. *> \verbatim
  44. *> UPLO is CHARACTER*1
  45. *> Specifies whether the factor stored in A is upper or lower
  46. *> triangular.
  47. *> = 'U': Upper triangular
  48. *> = 'L': Lower triangular
  49. *> \endverbatim
  50. *>
  51. *> \param[in] TRANS
  52. *> \verbatim
  53. *> TRANS is CHARACTER*1
  54. *> Specifies the operation to be performed:
  55. *> = 'N': x := A*x
  56. *> = 'T': x := A'*x
  57. *> = 'C': x := A'*x
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIAG
  61. *> \verbatim
  62. *> DIAG is CHARACTER*1
  63. *> Specifies whether or not the diagonal blocks are unit
  64. *> matrices. If the diagonal blocks are assumed to be unit,
  65. *> then A = U or A = L, otherwise A = U*D or A = L*D.
  66. *> = 'U': Diagonal blocks are assumed to be unit matrices.
  67. *> = 'N': Diagonal blocks are assumed to be non-unit matrices.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] N
  71. *> \verbatim
  72. *> N is INTEGER
  73. *> The number of rows and columns of the matrix A. N >= 0.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] NRHS
  77. *> \verbatim
  78. *> NRHS is INTEGER
  79. *> The number of right hand sides, i.e., the number of vectors
  80. *> x to be multiplied by A. NRHS >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] A
  84. *> \verbatim
  85. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  86. *> The block diagonal matrix D and the multipliers used to
  87. *> obtain the factor U or L as computed by DSYTRF_ROOK.
  88. *> Stored as a 2-D triangular matrix.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] LDA
  92. *> \verbatim
  93. *> LDA is INTEGER
  94. *> The leading dimension of the array A. LDA >= max(1,N).
  95. *> \endverbatim
  96. *>
  97. *> \param[in] IPIV
  98. *> \verbatim
  99. *> IPIV is INTEGER array, dimension (N)
  100. *> Details of the interchanges and the block structure of D,
  101. *> as determined by DSYTRF_ROOK.
  102. *>
  103. *> If UPLO = 'U':
  104. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  105. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  106. *> (If IPIV( k ) = k, no interchange was done).
  107. *>
  108. *> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  109. *> columns k and -IPIV(k) were interchanged and rows and
  110. *> columns k-1 and -IPIV(k-1) were inerchaged,
  111. *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  112. *>
  113. *> If UPLO = 'L':
  114. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  115. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  116. *> (If IPIV( k ) = k, no interchange was done).
  117. *>
  118. *> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  119. *> columns k and -IPIV(k) were interchanged and rows and
  120. *> columns k+1 and -IPIV(k+1) were inerchaged,
  121. *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  122. *> \endverbatim
  123. *>
  124. *> \param[in,out] B
  125. *> \verbatim
  126. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  127. *> On entry, B contains NRHS vectors of length N.
  128. *> On exit, B is overwritten with the product A * B.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] LDB
  132. *> \verbatim
  133. *> LDB is INTEGER
  134. *> The leading dimension of the array B. LDB >= max(1,N).
  135. *> \endverbatim
  136. *>
  137. *> \param[out] INFO
  138. *> \verbatim
  139. *> INFO is INTEGER
  140. *> = 0: successful exit
  141. *> < 0: if INFO = -k, the k-th argument had an illegal value
  142. *> \endverbatim
  143. *
  144. * Authors:
  145. * ========
  146. *
  147. *> \author Univ. of Tennessee
  148. *> \author Univ. of California Berkeley
  149. *> \author Univ. of Colorado Denver
  150. *> \author NAG Ltd.
  151. *
  152. *> \ingroup double_lin
  153. *
  154. * =====================================================================
  155. SUBROUTINE DLAVSY_ROOK( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV,
  156. $ B, LDB, INFO )
  157. *
  158. * -- LAPACK test routine --
  159. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  160. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  161. *
  162. * .. Scalar Arguments ..
  163. CHARACTER DIAG, TRANS, UPLO
  164. INTEGER INFO, LDA, LDB, N, NRHS
  165. * ..
  166. * .. Array Arguments ..
  167. INTEGER IPIV( * )
  168. DOUBLE PRECISION A( LDA, * ), B( LDB, * )
  169. * ..
  170. *
  171. * =====================================================================
  172. *
  173. * .. Parameters ..
  174. DOUBLE PRECISION ONE
  175. PARAMETER ( ONE = 1.0D+0 )
  176. * ..
  177. * .. Local Scalars ..
  178. LOGICAL NOUNIT
  179. INTEGER J, K, KP
  180. DOUBLE PRECISION D11, D12, D21, D22, T1, T2
  181. * ..
  182. * .. External Functions ..
  183. LOGICAL LSAME
  184. EXTERNAL LSAME
  185. * ..
  186. * .. External Subroutines ..
  187. EXTERNAL DGEMV, DGER, DSCAL, DSWAP, XERBLA
  188. * ..
  189. * .. Intrinsic Functions ..
  190. INTRINSIC ABS, MAX
  191. * ..
  192. * .. Executable Statements ..
  193. *
  194. * Test the input parameters.
  195. *
  196. INFO = 0
  197. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  198. INFO = -1
  199. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
  200. $ LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  201. INFO = -2
  202. ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
  203. $ THEN
  204. INFO = -3
  205. ELSE IF( N.LT.0 ) THEN
  206. INFO = -4
  207. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  208. INFO = -6
  209. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  210. INFO = -9
  211. END IF
  212. IF( INFO.NE.0 ) THEN
  213. CALL XERBLA( 'DLAVSY_ROOK ', -INFO )
  214. RETURN
  215. END IF
  216. *
  217. * Quick return if possible.
  218. *
  219. IF( N.EQ.0 )
  220. $ RETURN
  221. *
  222. NOUNIT = LSAME( DIAG, 'N' )
  223. *------------------------------------------
  224. *
  225. * Compute B := A * B (No transpose)
  226. *
  227. *------------------------------------------
  228. IF( LSAME( TRANS, 'N' ) ) THEN
  229. *
  230. * Compute B := U*B
  231. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  232. *
  233. IF( LSAME( UPLO, 'U' ) ) THEN
  234. *
  235. * Loop forward applying the transformations.
  236. *
  237. K = 1
  238. 10 CONTINUE
  239. IF( K.GT.N )
  240. $ GO TO 30
  241. IF( IPIV( K ).GT.0 ) THEN
  242. *
  243. * 1 x 1 pivot block
  244. *
  245. * Multiply by the diagonal element if forming U * D.
  246. *
  247. IF( NOUNIT )
  248. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  249. *
  250. * Multiply by P(K) * inv(U(K)) if K > 1.
  251. *
  252. IF( K.GT.1 ) THEN
  253. *
  254. * Apply the transformation.
  255. *
  256. CALL DGER( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
  257. $ LDB, B( 1, 1 ), LDB )
  258. *
  259. * Interchange if P(K) .ne. I.
  260. *
  261. KP = IPIV( K )
  262. IF( KP.NE.K )
  263. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  264. END IF
  265. K = K + 1
  266. ELSE
  267. *
  268. * 2 x 2 pivot block
  269. *
  270. * Multiply by the diagonal block if forming U * D.
  271. *
  272. IF( NOUNIT ) THEN
  273. D11 = A( K, K )
  274. D22 = A( K+1, K+1 )
  275. D12 = A( K, K+1 )
  276. D21 = D12
  277. DO 20 J = 1, NRHS
  278. T1 = B( K, J )
  279. T2 = B( K+1, J )
  280. B( K, J ) = D11*T1 + D12*T2
  281. B( K+1, J ) = D21*T1 + D22*T2
  282. 20 CONTINUE
  283. END IF
  284. *
  285. * Multiply by P(K) * inv(U(K)) if K > 1.
  286. *
  287. IF( K.GT.1 ) THEN
  288. *
  289. * Apply the transformations.
  290. *
  291. CALL DGER( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
  292. $ LDB, B( 1, 1 ), LDB )
  293. CALL DGER( K-1, NRHS, ONE, A( 1, K+1 ), 1,
  294. $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
  295. *
  296. * Interchange if a permutation was applied at the
  297. * K-th step of the factorization.
  298. *
  299. * Swap the first of pair with IMAXth
  300. *
  301. KP = ABS( IPIV( K ) )
  302. IF( KP.NE.K )
  303. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  304. *
  305. * NOW swap the first of pair with Pth
  306. *
  307. KP = ABS( IPIV( K+1 ) )
  308. IF( KP.NE.K+1 )
  309. $ CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  310. $ LDB )
  311. END IF
  312. K = K + 2
  313. END IF
  314. GO TO 10
  315. 30 CONTINUE
  316. *
  317. * Compute B := L*B
  318. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
  319. *
  320. ELSE
  321. *
  322. * Loop backward applying the transformations to B.
  323. *
  324. K = N
  325. 40 CONTINUE
  326. IF( K.LT.1 )
  327. $ GO TO 60
  328. *
  329. * Test the pivot index. If greater than zero, a 1 x 1
  330. * pivot was used, otherwise a 2 x 2 pivot was used.
  331. *
  332. IF( IPIV( K ).GT.0 ) THEN
  333. *
  334. * 1 x 1 pivot block:
  335. *
  336. * Multiply by the diagonal element if forming L * D.
  337. *
  338. IF( NOUNIT )
  339. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  340. *
  341. * Multiply by P(K) * inv(L(K)) if K < N.
  342. *
  343. IF( K.NE.N ) THEN
  344. KP = IPIV( K )
  345. *
  346. * Apply the transformation.
  347. *
  348. CALL DGER( N-K, NRHS, ONE, A( K+1, K ), 1, B( K, 1 ),
  349. $ LDB, B( K+1, 1 ), LDB )
  350. *
  351. * Interchange if a permutation was applied at the
  352. * K-th step of the factorization.
  353. *
  354. IF( KP.NE.K )
  355. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  356. END IF
  357. K = K - 1
  358. *
  359. ELSE
  360. *
  361. * 2 x 2 pivot block:
  362. *
  363. * Multiply by the diagonal block if forming L * D.
  364. *
  365. IF( NOUNIT ) THEN
  366. D11 = A( K-1, K-1 )
  367. D22 = A( K, K )
  368. D21 = A( K, K-1 )
  369. D12 = D21
  370. DO 50 J = 1, NRHS
  371. T1 = B( K-1, J )
  372. T2 = B( K, J )
  373. B( K-1, J ) = D11*T1 + D12*T2
  374. B( K, J ) = D21*T1 + D22*T2
  375. 50 CONTINUE
  376. END IF
  377. *
  378. * Multiply by P(K) * inv(L(K)) if K < N.
  379. *
  380. IF( K.NE.N ) THEN
  381. *
  382. * Apply the transformation.
  383. *
  384. CALL DGER( N-K, NRHS, ONE, A( K+1, K ), 1, B( K, 1 ),
  385. $ LDB, B( K+1, 1 ), LDB )
  386. CALL DGER( N-K, NRHS, ONE, A( K+1, K-1 ), 1,
  387. $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
  388. *
  389. * Interchange if a permutation was applied at the
  390. * K-th step of the factorization.
  391. *
  392. * Swap the second of pair with IMAXth
  393. *
  394. KP = ABS( IPIV( K ) )
  395. IF( KP.NE.K )
  396. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  397. *
  398. * NOW swap the first of pair with Pth
  399. *
  400. KP = ABS( IPIV( K-1 ) )
  401. IF( KP.NE.K-1 )
  402. $ CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  403. $ LDB )
  404. END IF
  405. K = K - 2
  406. END IF
  407. GO TO 40
  408. 60 CONTINUE
  409. END IF
  410. *----------------------------------------
  411. *
  412. * Compute B := A' * B (transpose)
  413. *
  414. *----------------------------------------
  415. ELSE
  416. *
  417. * Form B := U'*B
  418. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  419. * and U' = inv(U'(1))*P(1)* ... *inv(U'(m))*P(m)
  420. *
  421. IF( LSAME( UPLO, 'U' ) ) THEN
  422. *
  423. * Loop backward applying the transformations.
  424. *
  425. K = N
  426. 70 CONTINUE
  427. IF( K.LT.1 )
  428. $ GO TO 90
  429. *
  430. * 1 x 1 pivot block.
  431. *
  432. IF( IPIV( K ).GT.0 ) THEN
  433. IF( K.GT.1 ) THEN
  434. *
  435. * Interchange if P(K) .ne. I.
  436. *
  437. KP = IPIV( K )
  438. IF( KP.NE.K )
  439. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  440. *
  441. * Apply the transformation
  442. *
  443. CALL DGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB,
  444. $ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  445. END IF
  446. IF( NOUNIT )
  447. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  448. K = K - 1
  449. *
  450. * 2 x 2 pivot block.
  451. *
  452. ELSE
  453. IF( K.GT.2 ) THEN
  454. *
  455. * Swap the second of pair with Pth
  456. *
  457. KP = ABS( IPIV( K ) )
  458. IF( KP.NE.K )
  459. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  460. *
  461. * Now swap the first of pair with IMAX(r)th
  462. *
  463. KP = ABS( IPIV( K-1 ) )
  464. IF( KP.NE.K-1 )
  465. $ CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  466. $ LDB )
  467. *
  468. * Apply the transformations
  469. *
  470. CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
  471. $ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  472. CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
  473. $ A( 1, K-1 ), 1, ONE, B( K-1, 1 ), LDB )
  474. END IF
  475. *
  476. * Multiply by the diagonal block if non-unit.
  477. *
  478. IF( NOUNIT ) THEN
  479. D11 = A( K-1, K-1 )
  480. D22 = A( K, K )
  481. D12 = A( K-1, K )
  482. D21 = D12
  483. DO 80 J = 1, NRHS
  484. T1 = B( K-1, J )
  485. T2 = B( K, J )
  486. B( K-1, J ) = D11*T1 + D12*T2
  487. B( K, J ) = D21*T1 + D22*T2
  488. 80 CONTINUE
  489. END IF
  490. K = K - 2
  491. END IF
  492. GO TO 70
  493. 90 CONTINUE
  494. *
  495. * Form B := L'*B
  496. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
  497. * and L' = inv(L'(m))*P(m)* ... *inv(L'(1))*P(1)
  498. *
  499. ELSE
  500. *
  501. * Loop forward applying the L-transformations.
  502. *
  503. K = 1
  504. 100 CONTINUE
  505. IF( K.GT.N )
  506. $ GO TO 120
  507. *
  508. * 1 x 1 pivot block
  509. *
  510. IF( IPIV( K ).GT.0 ) THEN
  511. IF( K.LT.N ) THEN
  512. *
  513. * Interchange if P(K) .ne. I.
  514. *
  515. KP = IPIV( K )
  516. IF( KP.NE.K )
  517. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  518. *
  519. * Apply the transformation
  520. *
  521. CALL DGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ),
  522. $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  523. END IF
  524. IF( NOUNIT )
  525. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  526. K = K + 1
  527. *
  528. * 2 x 2 pivot block.
  529. *
  530. ELSE
  531. IF( K.LT.N-1 ) THEN
  532. *
  533. * Swap the first of pair with Pth
  534. *
  535. KP = ABS( IPIV( K ) )
  536. IF( KP.NE.K )
  537. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  538. *
  539. * Now swap the second of pair with IMAX(r)th
  540. *
  541. KP = ABS( IPIV( K+1 ) )
  542. IF( KP.NE.K+1 )
  543. $ CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  544. $ LDB )
  545. *
  546. * Apply the transformation
  547. *
  548. CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
  549. $ B( K+2, 1 ), LDB, A( K+2, K+1 ), 1, ONE,
  550. $ B( K+1, 1 ), LDB )
  551. CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
  552. $ B( K+2, 1 ), LDB, A( K+2, K ), 1, ONE,
  553. $ B( K, 1 ), LDB )
  554. END IF
  555. *
  556. * Multiply by the diagonal block if non-unit.
  557. *
  558. IF( NOUNIT ) THEN
  559. D11 = A( K, K )
  560. D22 = A( K+1, K+1 )
  561. D21 = A( K+1, K )
  562. D12 = D21
  563. DO 110 J = 1, NRHS
  564. T1 = B( K, J )
  565. T2 = B( K+1, J )
  566. B( K, J ) = D11*T1 + D12*T2
  567. B( K+1, J ) = D21*T1 + D22*T2
  568. 110 CONTINUE
  569. END IF
  570. K = K + 2
  571. END IF
  572. GO TO 100
  573. 120 CONTINUE
  574. END IF
  575. *
  576. END IF
  577. RETURN
  578. *
  579. * End of DLAVSY_ROOK
  580. *
  581. END