You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlavsy.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548
  1. *> \brief \b DLAVSY
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DLAVSY( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
  12. * LDB, INFO )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER DIAG, TRANS, UPLO
  16. * INTEGER INFO, LDA, LDB, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * DOUBLE PRECISION A( LDA, * ), B( LDB, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> DLAVSY performs one of the matrix-vector operations
  30. *> x := A*x or x := A'*x,
  31. *> where x is an N element vector and A is one of the factors
  32. *> from the block U*D*U' or L*D*L' factorization computed by DSYTRF.
  33. *>
  34. *> If TRANS = 'N', multiplies by U or U * D (or L or L * D)
  35. *> If TRANS = 'T', multiplies by U' or D * U' (or L' or D * L')
  36. *> If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L')
  37. *> \endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. *> \param[in] UPLO
  43. *> \verbatim
  44. *> UPLO is CHARACTER*1
  45. *> Specifies whether the factor stored in A is upper or lower
  46. *> triangular.
  47. *> = 'U': Upper triangular
  48. *> = 'L': Lower triangular
  49. *> \endverbatim
  50. *>
  51. *> \param[in] TRANS
  52. *> \verbatim
  53. *> TRANS is CHARACTER*1
  54. *> Specifies the operation to be performed:
  55. *> = 'N': x := A*x
  56. *> = 'T': x := A'*x
  57. *> = 'C': x := A'*x
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIAG
  61. *> \verbatim
  62. *> DIAG is CHARACTER*1
  63. *> Specifies whether or not the diagonal blocks are unit
  64. *> matrices. If the diagonal blocks are assumed to be unit,
  65. *> then A = U or A = L, otherwise A = U*D or A = L*D.
  66. *> = 'U': Diagonal blocks are assumed to be unit matrices.
  67. *> = 'N': Diagonal blocks are assumed to be non-unit matrices.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] N
  71. *> \verbatim
  72. *> N is INTEGER
  73. *> The number of rows and columns of the matrix A. N >= 0.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] NRHS
  77. *> \verbatim
  78. *> NRHS is INTEGER
  79. *> The number of right hand sides, i.e., the number of vectors
  80. *> x to be multiplied by A. NRHS >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] A
  84. *> \verbatim
  85. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  86. *> The block diagonal matrix D and the multipliers used to
  87. *> obtain the factor U or L as computed by DSYTRF.
  88. *> Stored as a 2-D triangular matrix.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] LDA
  92. *> \verbatim
  93. *> LDA is INTEGER
  94. *> The leading dimension of the array A. LDA >= max(1,N).
  95. *> \endverbatim
  96. *>
  97. *> \param[in] IPIV
  98. *> \verbatim
  99. *> IPIV is INTEGER array, dimension (N)
  100. *> Details of the interchanges and the block structure of D,
  101. *> as determined by DSYTRF.
  102. *>
  103. *> If UPLO = 'U':
  104. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  105. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  106. *> (If IPIV( k ) = k, no interchange was done).
  107. *>
  108. *> If IPIV(k) = IPIV(k-1) < 0, then rows and
  109. *> columns k-1 and -IPIV(k) were interchanged,
  110. *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  111. *>
  112. *> If UPLO = 'L':
  113. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  114. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  115. *> (If IPIV( k ) = k, no interchange was done).
  116. *>
  117. *> If IPIV(k) = IPIV(k+1) < 0, then rows and
  118. *> columns k+1 and -IPIV(k) were interchanged,
  119. *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  120. *> \endverbatim
  121. *>
  122. *> \param[in,out] B
  123. *> \verbatim
  124. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  125. *> On entry, B contains NRHS vectors of length N.
  126. *> On exit, B is overwritten with the product A * B.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDB
  130. *> \verbatim
  131. *> LDB is INTEGER
  132. *> The leading dimension of the array B. LDB >= max(1,N).
  133. *> \endverbatim
  134. *>
  135. *> \param[out] INFO
  136. *> \verbatim
  137. *> INFO is INTEGER
  138. *> = 0: successful exit
  139. *> < 0: if INFO = -k, the k-th argument had an illegal value
  140. *> \endverbatim
  141. *
  142. * Authors:
  143. * ========
  144. *
  145. *> \author Univ. of Tennessee
  146. *> \author Univ. of California Berkeley
  147. *> \author Univ. of Colorado Denver
  148. *> \author NAG Ltd.
  149. *
  150. *> \ingroup double_lin
  151. *
  152. * =====================================================================
  153. SUBROUTINE DLAVSY( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
  154. $ LDB, INFO )
  155. *
  156. * -- LAPACK test routine --
  157. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  158. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  159. *
  160. * .. Scalar Arguments ..
  161. CHARACTER DIAG, TRANS, UPLO
  162. INTEGER INFO, LDA, LDB, N, NRHS
  163. * ..
  164. * .. Array Arguments ..
  165. INTEGER IPIV( * )
  166. DOUBLE PRECISION A( LDA, * ), B( LDB, * )
  167. * ..
  168. *
  169. * =====================================================================
  170. *
  171. * .. Parameters ..
  172. DOUBLE PRECISION ONE
  173. PARAMETER ( ONE = 1.0D+0 )
  174. * ..
  175. * .. Local Scalars ..
  176. LOGICAL NOUNIT
  177. INTEGER J, K, KP
  178. DOUBLE PRECISION D11, D12, D21, D22, T1, T2
  179. * ..
  180. * .. External Functions ..
  181. LOGICAL LSAME
  182. EXTERNAL LSAME
  183. * ..
  184. * .. External Subroutines ..
  185. EXTERNAL DGEMV, DGER, DSCAL, DSWAP, XERBLA
  186. * ..
  187. * .. Intrinsic Functions ..
  188. INTRINSIC ABS, MAX
  189. * ..
  190. * .. Executable Statements ..
  191. *
  192. * Test the input parameters.
  193. *
  194. INFO = 0
  195. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  196. INFO = -1
  197. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
  198. $ LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  199. INFO = -2
  200. ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
  201. $ THEN
  202. INFO = -3
  203. ELSE IF( N.LT.0 ) THEN
  204. INFO = -4
  205. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  206. INFO = -6
  207. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  208. INFO = -9
  209. END IF
  210. IF( INFO.NE.0 ) THEN
  211. CALL XERBLA( 'DLAVSY ', -INFO )
  212. RETURN
  213. END IF
  214. *
  215. * Quick return if possible.
  216. *
  217. IF( N.EQ.0 )
  218. $ RETURN
  219. *
  220. NOUNIT = LSAME( DIAG, 'N' )
  221. *------------------------------------------
  222. *
  223. * Compute B := A * B (No transpose)
  224. *
  225. *------------------------------------------
  226. IF( LSAME( TRANS, 'N' ) ) THEN
  227. *
  228. * Compute B := U*B
  229. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  230. *
  231. IF( LSAME( UPLO, 'U' ) ) THEN
  232. *
  233. * Loop forward applying the transformations.
  234. *
  235. K = 1
  236. 10 CONTINUE
  237. IF( K.GT.N )
  238. $ GO TO 30
  239. IF( IPIV( K ).GT.0 ) THEN
  240. *
  241. * 1 x 1 pivot block
  242. *
  243. * Multiply by the diagonal element if forming U * D.
  244. *
  245. IF( NOUNIT )
  246. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  247. *
  248. * Multiply by P(K) * inv(U(K)) if K > 1.
  249. *
  250. IF( K.GT.1 ) THEN
  251. *
  252. * Apply the transformation.
  253. *
  254. CALL DGER( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
  255. $ LDB, B( 1, 1 ), LDB )
  256. *
  257. * Interchange if P(K) .ne. I.
  258. *
  259. KP = IPIV( K )
  260. IF( KP.NE.K )
  261. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  262. END IF
  263. K = K + 1
  264. ELSE
  265. *
  266. * 2 x 2 pivot block
  267. *
  268. * Multiply by the diagonal block if forming U * D.
  269. *
  270. IF( NOUNIT ) THEN
  271. D11 = A( K, K )
  272. D22 = A( K+1, K+1 )
  273. D12 = A( K, K+1 )
  274. D21 = D12
  275. DO 20 J = 1, NRHS
  276. T1 = B( K, J )
  277. T2 = B( K+1, J )
  278. B( K, J ) = D11*T1 + D12*T2
  279. B( K+1, J ) = D21*T1 + D22*T2
  280. 20 CONTINUE
  281. END IF
  282. *
  283. * Multiply by P(K) * inv(U(K)) if K > 1.
  284. *
  285. IF( K.GT.1 ) THEN
  286. *
  287. * Apply the transformations.
  288. *
  289. CALL DGER( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
  290. $ LDB, B( 1, 1 ), LDB )
  291. CALL DGER( K-1, NRHS, ONE, A( 1, K+1 ), 1,
  292. $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
  293. *
  294. * Interchange if P(K) .ne. I.
  295. *
  296. KP = ABS( IPIV( K ) )
  297. IF( KP.NE.K )
  298. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  299. END IF
  300. K = K + 2
  301. END IF
  302. GO TO 10
  303. 30 CONTINUE
  304. *
  305. * Compute B := L*B
  306. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
  307. *
  308. ELSE
  309. *
  310. * Loop backward applying the transformations to B.
  311. *
  312. K = N
  313. 40 CONTINUE
  314. IF( K.LT.1 )
  315. $ GO TO 60
  316. *
  317. * Test the pivot index. If greater than zero, a 1 x 1
  318. * pivot was used, otherwise a 2 x 2 pivot was used.
  319. *
  320. IF( IPIV( K ).GT.0 ) THEN
  321. *
  322. * 1 x 1 pivot block:
  323. *
  324. * Multiply by the diagonal element if forming L * D.
  325. *
  326. IF( NOUNIT )
  327. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  328. *
  329. * Multiply by P(K) * inv(L(K)) if K < N.
  330. *
  331. IF( K.NE.N ) THEN
  332. KP = IPIV( K )
  333. *
  334. * Apply the transformation.
  335. *
  336. CALL DGER( N-K, NRHS, ONE, A( K+1, K ), 1, B( K, 1 ),
  337. $ LDB, B( K+1, 1 ), LDB )
  338. *
  339. * Interchange if a permutation was applied at the
  340. * K-th step of the factorization.
  341. *
  342. IF( KP.NE.K )
  343. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  344. END IF
  345. K = K - 1
  346. *
  347. ELSE
  348. *
  349. * 2 x 2 pivot block:
  350. *
  351. * Multiply by the diagonal block if forming L * D.
  352. *
  353. IF( NOUNIT ) THEN
  354. D11 = A( K-1, K-1 )
  355. D22 = A( K, K )
  356. D21 = A( K, K-1 )
  357. D12 = D21
  358. DO 50 J = 1, NRHS
  359. T1 = B( K-1, J )
  360. T2 = B( K, J )
  361. B( K-1, J ) = D11*T1 + D12*T2
  362. B( K, J ) = D21*T1 + D22*T2
  363. 50 CONTINUE
  364. END IF
  365. *
  366. * Multiply by P(K) * inv(L(K)) if K < N.
  367. *
  368. IF( K.NE.N ) THEN
  369. *
  370. * Apply the transformation.
  371. *
  372. CALL DGER( N-K, NRHS, ONE, A( K+1, K ), 1, B( K, 1 ),
  373. $ LDB, B( K+1, 1 ), LDB )
  374. CALL DGER( N-K, NRHS, ONE, A( K+1, K-1 ), 1,
  375. $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
  376. *
  377. * Interchange if a permutation was applied at the
  378. * K-th step of the factorization.
  379. *
  380. KP = ABS( IPIV( K ) )
  381. IF( KP.NE.K )
  382. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  383. END IF
  384. K = K - 2
  385. END IF
  386. GO TO 40
  387. 60 CONTINUE
  388. END IF
  389. *----------------------------------------
  390. *
  391. * Compute B := A' * B (transpose)
  392. *
  393. *----------------------------------------
  394. ELSE
  395. *
  396. * Form B := U'*B
  397. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  398. * and U' = inv(U'(1))*P(1)* ... *inv(U'(m))*P(m)
  399. *
  400. IF( LSAME( UPLO, 'U' ) ) THEN
  401. *
  402. * Loop backward applying the transformations.
  403. *
  404. K = N
  405. 70 CONTINUE
  406. IF( K.LT.1 )
  407. $ GO TO 90
  408. *
  409. * 1 x 1 pivot block.
  410. *
  411. IF( IPIV( K ).GT.0 ) THEN
  412. IF( K.GT.1 ) THEN
  413. *
  414. * Interchange if P(K) .ne. I.
  415. *
  416. KP = IPIV( K )
  417. IF( KP.NE.K )
  418. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  419. *
  420. * Apply the transformation
  421. *
  422. CALL DGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB,
  423. $ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  424. END IF
  425. IF( NOUNIT )
  426. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  427. K = K - 1
  428. *
  429. * 2 x 2 pivot block.
  430. *
  431. ELSE
  432. IF( K.GT.2 ) THEN
  433. *
  434. * Interchange if P(K) .ne. I.
  435. *
  436. KP = ABS( IPIV( K ) )
  437. IF( KP.NE.K-1 )
  438. $ CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  439. $ LDB )
  440. *
  441. * Apply the transformations
  442. *
  443. CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
  444. $ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  445. CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
  446. $ A( 1, K-1 ), 1, ONE, B( K-1, 1 ), LDB )
  447. END IF
  448. *
  449. * Multiply by the diagonal block if non-unit.
  450. *
  451. IF( NOUNIT ) THEN
  452. D11 = A( K-1, K-1 )
  453. D22 = A( K, K )
  454. D12 = A( K-1, K )
  455. D21 = D12
  456. DO 80 J = 1, NRHS
  457. T1 = B( K-1, J )
  458. T2 = B( K, J )
  459. B( K-1, J ) = D11*T1 + D12*T2
  460. B( K, J ) = D21*T1 + D22*T2
  461. 80 CONTINUE
  462. END IF
  463. K = K - 2
  464. END IF
  465. GO TO 70
  466. 90 CONTINUE
  467. *
  468. * Form B := L'*B
  469. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
  470. * and L' = inv(L'(m))*P(m)* ... *inv(L'(1))*P(1)
  471. *
  472. ELSE
  473. *
  474. * Loop forward applying the L-transformations.
  475. *
  476. K = 1
  477. 100 CONTINUE
  478. IF( K.GT.N )
  479. $ GO TO 120
  480. *
  481. * 1 x 1 pivot block
  482. *
  483. IF( IPIV( K ).GT.0 ) THEN
  484. IF( K.LT.N ) THEN
  485. *
  486. * Interchange if P(K) .ne. I.
  487. *
  488. KP = IPIV( K )
  489. IF( KP.NE.K )
  490. $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  491. *
  492. * Apply the transformation
  493. *
  494. CALL DGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ),
  495. $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  496. END IF
  497. IF( NOUNIT )
  498. $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  499. K = K + 1
  500. *
  501. * 2 x 2 pivot block.
  502. *
  503. ELSE
  504. IF( K.LT.N-1 ) THEN
  505. *
  506. * Interchange if P(K) .ne. I.
  507. *
  508. KP = ABS( IPIV( K ) )
  509. IF( KP.NE.K+1 )
  510. $ CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  511. $ LDB )
  512. *
  513. * Apply the transformation
  514. *
  515. CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
  516. $ B( K+2, 1 ), LDB, A( K+2, K+1 ), 1, ONE,
  517. $ B( K+1, 1 ), LDB )
  518. CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
  519. $ B( K+2, 1 ), LDB, A( K+2, K ), 1, ONE,
  520. $ B( K, 1 ), LDB )
  521. END IF
  522. *
  523. * Multiply by the diagonal block if non-unit.
  524. *
  525. IF( NOUNIT ) THEN
  526. D11 = A( K, K )
  527. D22 = A( K+1, K+1 )
  528. D21 = A( K+1, K )
  529. D12 = D21
  530. DO 110 J = 1, NRHS
  531. T1 = B( K, J )
  532. T2 = B( K+1, J )
  533. B( K, J ) = D11*T1 + D12*T2
  534. B( K+1, J ) = D21*T1 + D22*T2
  535. 110 CONTINUE
  536. END IF
  537. K = K + 2
  538. END IF
  539. GO TO 100
  540. 120 CONTINUE
  541. END IF
  542. *
  543. END IF
  544. RETURN
  545. *
  546. * End of DLAVSY
  547. *
  548. END