You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csyt01.f 6.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. *> \brief \b CSYT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
  12. * RWORK, RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER LDA, LDAFAC, LDC, N
  17. * REAL RESID
  18. * ..
  19. * .. Array Arguments ..
  20. * INTEGER IPIV( * )
  21. * REAL RWORK( * )
  22. * COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
  23. * ..
  24. *
  25. *
  26. *> \par Purpose:
  27. * =============
  28. *>
  29. *> \verbatim
  30. *>
  31. *> CSYT01 reconstructs a complex symmetric indefinite matrix A from its
  32. *> block L*D*L' or U*D*U' factorization and computes the residual
  33. *> norm( C - A ) / ( N * norm(A) * EPS ),
  34. *> where C is the reconstructed matrix, EPS is the machine epsilon,
  35. *> L' is the transpose of L, and U' is the transpose of U.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] UPLO
  42. *> \verbatim
  43. *> UPLO is CHARACTER*1
  44. *> Specifies whether the upper or lower triangular part of the
  45. *> complex symmetric matrix A is stored:
  46. *> = 'U': Upper triangular
  47. *> = 'L': Lower triangular
  48. *> \endverbatim
  49. *>
  50. *> \param[in] N
  51. *> \verbatim
  52. *> N is INTEGER
  53. *> The number of rows and columns of the matrix A. N >= 0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] A
  57. *> \verbatim
  58. *> A is COMPLEX array, dimension (LDA,N)
  59. *> The original complex symmetric matrix A.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] LDA
  63. *> \verbatim
  64. *> LDA is INTEGER
  65. *> The leading dimension of the array A. LDA >= max(1,N)
  66. *> \endverbatim
  67. *>
  68. *> \param[in] AFAC
  69. *> \verbatim
  70. *> AFAC is COMPLEX array, dimension (LDAFAC,N)
  71. *> The factored form of the matrix A. AFAC contains the block
  72. *> diagonal matrix D and the multipliers used to obtain the
  73. *> factor L or U from the block L*D*L' or U*D*U' factorization
  74. *> as computed by CSYTRF.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDAFAC
  78. *> \verbatim
  79. *> LDAFAC is INTEGER
  80. *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] IPIV
  84. *> \verbatim
  85. *> IPIV is INTEGER array, dimension (N)
  86. *> The pivot indices from CSYTRF.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] C
  90. *> \verbatim
  91. *> C is COMPLEX array, dimension (LDC,N)
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDC
  95. *> \verbatim
  96. *> LDC is INTEGER
  97. *> The leading dimension of the array C. LDC >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[out] RWORK
  101. *> \verbatim
  102. *> RWORK is REAL array, dimension (N)
  103. *> \endverbatim
  104. *>
  105. *> \param[out] RESID
  106. *> \verbatim
  107. *> RESID is REAL
  108. *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
  109. *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \ingroup complex_lin
  121. *
  122. * =====================================================================
  123. SUBROUTINE CSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
  124. $ RWORK, RESID )
  125. *
  126. * -- LAPACK test routine --
  127. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  128. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  129. *
  130. * .. Scalar Arguments ..
  131. CHARACTER UPLO
  132. INTEGER LDA, LDAFAC, LDC, N
  133. REAL RESID
  134. * ..
  135. * .. Array Arguments ..
  136. INTEGER IPIV( * )
  137. REAL RWORK( * )
  138. COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
  139. * ..
  140. *
  141. * =====================================================================
  142. *
  143. * .. Parameters ..
  144. REAL ZERO, ONE
  145. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  146. COMPLEX CZERO, CONE
  147. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  148. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  149. * ..
  150. * .. Local Scalars ..
  151. INTEGER I, INFO, J
  152. REAL ANORM, EPS
  153. * ..
  154. * .. External Functions ..
  155. LOGICAL LSAME
  156. REAL CLANSY, SLAMCH
  157. EXTERNAL LSAME, CLANSY, SLAMCH
  158. * ..
  159. * .. External Subroutines ..
  160. EXTERNAL CLASET, CLAVSY
  161. * ..
  162. * .. Intrinsic Functions ..
  163. INTRINSIC REAL
  164. * ..
  165. * .. Executable Statements ..
  166. *
  167. * Quick exit if N = 0.
  168. *
  169. IF( N.LE.0 ) THEN
  170. RESID = ZERO
  171. RETURN
  172. END IF
  173. *
  174. * Determine EPS and the norm of A.
  175. *
  176. EPS = SLAMCH( 'Epsilon' )
  177. ANORM = CLANSY( '1', UPLO, N, A, LDA, RWORK )
  178. *
  179. * Initialize C to the identity matrix.
  180. *
  181. CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
  182. *
  183. * Call CLAVSY to form the product D * U' (or D * L' ).
  184. *
  185. CALL CLAVSY( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, LDAFAC,
  186. $ IPIV, C, LDC, INFO )
  187. *
  188. * Call CLAVSY again to multiply by U (or L ).
  189. *
  190. CALL CLAVSY( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
  191. $ IPIV, C, LDC, INFO )
  192. *
  193. * Compute the difference C - A .
  194. *
  195. IF( LSAME( UPLO, 'U' ) ) THEN
  196. DO 20 J = 1, N
  197. DO 10 I = 1, J
  198. C( I, J ) = C( I, J ) - A( I, J )
  199. 10 CONTINUE
  200. 20 CONTINUE
  201. ELSE
  202. DO 40 J = 1, N
  203. DO 30 I = J, N
  204. C( I, J ) = C( I, J ) - A( I, J )
  205. 30 CONTINUE
  206. 40 CONTINUE
  207. END IF
  208. *
  209. * Compute norm( C - A ) / ( N * norm(A) * EPS )
  210. *
  211. RESID = CLANSY( '1', UPLO, N, C, LDC, RWORK )
  212. *
  213. IF( ANORM.LE.ZERO ) THEN
  214. IF( RESID.NE.ZERO )
  215. $ RESID = ONE / EPS
  216. ELSE
  217. RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS
  218. END IF
  219. *
  220. RETURN
  221. *
  222. * End of CSYT01
  223. *
  224. END