You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cqlt01.f 6.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
  1. *> \brief \b CQLT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CQLT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
  12. * RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LWORK, M, N
  16. * ..
  17. * .. Array Arguments ..
  18. * REAL RESULT( * ), RWORK( * )
  19. * COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ),
  20. * $ Q( LDA, * ), TAU( * ), WORK( LWORK )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> CQLT01 tests CGEQLF, which computes the QL factorization of an m-by-n
  30. *> matrix A, and partially tests CUNGQL which forms the m-by-m
  31. *> orthogonal matrix Q.
  32. *>
  33. *> CQLT01 compares L with Q'*A, and checks that Q is orthogonal.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] M
  40. *> \verbatim
  41. *> M is INTEGER
  42. *> The number of rows of the matrix A. M >= 0.
  43. *> \endverbatim
  44. *>
  45. *> \param[in] N
  46. *> \verbatim
  47. *> N is INTEGER
  48. *> The number of columns of the matrix A. N >= 0.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] A
  52. *> \verbatim
  53. *> A is COMPLEX array, dimension (LDA,N)
  54. *> The m-by-n matrix A.
  55. *> \endverbatim
  56. *>
  57. *> \param[out] AF
  58. *> \verbatim
  59. *> AF is COMPLEX array, dimension (LDA,N)
  60. *> Details of the QL factorization of A, as returned by CGEQLF.
  61. *> See CGEQLF for further details.
  62. *> \endverbatim
  63. *>
  64. *> \param[out] Q
  65. *> \verbatim
  66. *> Q is COMPLEX array, dimension (LDA,M)
  67. *> The m-by-m orthogonal matrix Q.
  68. *> \endverbatim
  69. *>
  70. *> \param[out] L
  71. *> \verbatim
  72. *> L is COMPLEX array, dimension (LDA,max(M,N))
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the arrays A, AF, Q and R.
  79. *> LDA >= max(M,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[out] TAU
  83. *> \verbatim
  84. *> TAU is COMPLEX array, dimension (min(M,N))
  85. *> The scalar factors of the elementary reflectors, as returned
  86. *> by CGEQLF.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] WORK
  90. *> \verbatim
  91. *> WORK is COMPLEX array, dimension (LWORK)
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LWORK
  95. *> \verbatim
  96. *> LWORK is INTEGER
  97. *> The dimension of the array WORK.
  98. *> \endverbatim
  99. *>
  100. *> \param[out] RWORK
  101. *> \verbatim
  102. *> RWORK is REAL array, dimension (M)
  103. *> \endverbatim
  104. *>
  105. *> \param[out] RESULT
  106. *> \verbatim
  107. *> RESULT is REAL array, dimension (2)
  108. *> The test ratios:
  109. *> RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
  110. *> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
  111. *> \endverbatim
  112. *
  113. * Authors:
  114. * ========
  115. *
  116. *> \author Univ. of Tennessee
  117. *> \author Univ. of California Berkeley
  118. *> \author Univ. of Colorado Denver
  119. *> \author NAG Ltd.
  120. *
  121. *> \ingroup complex_lin
  122. *
  123. * =====================================================================
  124. SUBROUTINE CQLT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
  125. $ RWORK, RESULT )
  126. *
  127. * -- LAPACK test routine --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. *
  131. * .. Scalar Arguments ..
  132. INTEGER LDA, LWORK, M, N
  133. * ..
  134. * .. Array Arguments ..
  135. REAL RESULT( * ), RWORK( * )
  136. COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ),
  137. $ Q( LDA, * ), TAU( * ), WORK( LWORK )
  138. * ..
  139. *
  140. * =====================================================================
  141. *
  142. * .. Parameters ..
  143. REAL ZERO, ONE
  144. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  145. COMPLEX ROGUE
  146. PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
  147. * ..
  148. * .. Local Scalars ..
  149. INTEGER INFO, MINMN
  150. REAL ANORM, EPS, RESID
  151. * ..
  152. * .. External Functions ..
  153. REAL CLANGE, CLANSY, SLAMCH
  154. EXTERNAL CLANGE, CLANSY, SLAMCH
  155. * ..
  156. * .. External Subroutines ..
  157. EXTERNAL CGEMM, CGEQLF, CHERK, CLACPY, CLASET, CUNGQL
  158. * ..
  159. * .. Intrinsic Functions ..
  160. INTRINSIC CMPLX, MAX, MIN, REAL
  161. * ..
  162. * .. Scalars in Common ..
  163. CHARACTER*32 SRNAMT
  164. * ..
  165. * .. Common blocks ..
  166. COMMON / SRNAMC / SRNAMT
  167. * ..
  168. * .. Executable Statements ..
  169. *
  170. MINMN = MIN( M, N )
  171. EPS = SLAMCH( 'Epsilon' )
  172. *
  173. * Copy the matrix A to the array AF.
  174. *
  175. CALL CLACPY( 'Full', M, N, A, LDA, AF, LDA )
  176. *
  177. * Factorize the matrix A in the array AF.
  178. *
  179. SRNAMT = 'CGEQLF'
  180. CALL CGEQLF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
  181. *
  182. * Copy details of Q
  183. *
  184. CALL CLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
  185. IF( M.GE.N ) THEN
  186. IF( N.LT.M .AND. N.GT.0 )
  187. $ CALL CLACPY( 'Full', M-N, N, AF, LDA, Q( 1, M-N+1 ), LDA )
  188. IF( N.GT.1 )
  189. $ CALL CLACPY( 'Upper', N-1, N-1, AF( M-N+1, 2 ), LDA,
  190. $ Q( M-N+1, M-N+2 ), LDA )
  191. ELSE
  192. IF( M.GT.1 )
  193. $ CALL CLACPY( 'Upper', M-1, M-1, AF( 1, N-M+2 ), LDA,
  194. $ Q( 1, 2 ), LDA )
  195. END IF
  196. *
  197. * Generate the m-by-m matrix Q
  198. *
  199. SRNAMT = 'CUNGQL'
  200. CALL CUNGQL( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
  201. *
  202. * Copy L
  203. *
  204. CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), L, LDA )
  205. IF( M.GE.N ) THEN
  206. IF( N.GT.0 )
  207. $ CALL CLACPY( 'Lower', N, N, AF( M-N+1, 1 ), LDA,
  208. $ L( M-N+1, 1 ), LDA )
  209. ELSE
  210. IF( N.GT.M .AND. M.GT.0 )
  211. $ CALL CLACPY( 'Full', M, N-M, AF, LDA, L, LDA )
  212. IF( M.GT.0 )
  213. $ CALL CLACPY( 'Lower', M, M, AF( 1, N-M+1 ), LDA,
  214. $ L( 1, N-M+1 ), LDA )
  215. END IF
  216. *
  217. * Compute L - Q'*A
  218. *
  219. CALL CGEMM( 'Conjugate transpose', 'No transpose', M, N, M,
  220. $ CMPLX( -ONE ), Q, LDA, A, LDA, CMPLX( ONE ), L, LDA )
  221. *
  222. * Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) .
  223. *
  224. ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
  225. RESID = CLANGE( '1', M, N, L, LDA, RWORK )
  226. IF( ANORM.GT.ZERO ) THEN
  227. RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M ) ) ) / ANORM ) / EPS
  228. ELSE
  229. RESULT( 1 ) = ZERO
  230. END IF
  231. *
  232. * Compute I - Q'*Q
  233. *
  234. CALL CLASET( 'Full', M, M, CMPLX( ZERO ), CMPLX( ONE ), L, LDA )
  235. CALL CHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, Q, LDA,
  236. $ ONE, L, LDA )
  237. *
  238. * Compute norm( I - Q'*Q ) / ( M * EPS ) .
  239. *
  240. RESID = CLANSY( '1', 'Upper', M, L, LDA, RWORK )
  241. *
  242. RESULT( 2 ) = ( RESID / REAL( MAX( 1, M ) ) ) / EPS
  243. *
  244. RETURN
  245. *
  246. * End of CQLT01
  247. *
  248. END