You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zstt22.f 7.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. *> \brief \b ZSTT22
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
  12. * LDWORK, RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER KBAND, LDU, LDWORK, M, N
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
  19. * $ SD( * ), SE( * )
  20. * COMPLEX*16 U( LDU, * ), WORK( LDWORK, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> ZSTT22 checks a set of M eigenvalues and eigenvectors,
  30. *>
  31. *> A U = U S
  32. *>
  33. *> where A is Hermitian tridiagonal, the columns of U are unitary,
  34. *> and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1).
  35. *> Two tests are performed:
  36. *>
  37. *> RESULT(1) = | U* A U - S | / ( |A| m ulp )
  38. *>
  39. *> RESULT(2) = | I - U*U | / ( m ulp )
  40. *> \endverbatim
  41. *
  42. * Arguments:
  43. * ==========
  44. *
  45. *> \param[in] N
  46. *> \verbatim
  47. *> N is INTEGER
  48. *> The size of the matrix. If it is zero, ZSTT22 does nothing.
  49. *> It must be at least zero.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] M
  53. *> \verbatim
  54. *> M is INTEGER
  55. *> The number of eigenpairs to check. If it is zero, ZSTT22
  56. *> does nothing. It must be at least zero.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] KBAND
  60. *> \verbatim
  61. *> KBAND is INTEGER
  62. *> The bandwidth of the matrix S. It may only be zero or one.
  63. *> If zero, then S is diagonal, and SE is not referenced. If
  64. *> one, then S is Hermitian tri-diagonal.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] AD
  68. *> \verbatim
  69. *> AD is DOUBLE PRECISION array, dimension (N)
  70. *> The diagonal of the original (unfactored) matrix A. A is
  71. *> assumed to be Hermitian tridiagonal.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] AE
  75. *> \verbatim
  76. *> AE is DOUBLE PRECISION array, dimension (N)
  77. *> The off-diagonal of the original (unfactored) matrix A. A
  78. *> is assumed to be Hermitian tridiagonal. AE(1) is ignored,
  79. *> AE(2) is the (1,2) and (2,1) element, etc.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] SD
  83. *> \verbatim
  84. *> SD is DOUBLE PRECISION array, dimension (N)
  85. *> The diagonal of the (Hermitian tri-) diagonal matrix S.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] SE
  89. *> \verbatim
  90. *> SE is DOUBLE PRECISION array, dimension (N)
  91. *> The off-diagonal of the (Hermitian tri-) diagonal matrix S.
  92. *> Not referenced if KBSND=0. If KBAND=1, then AE(1) is
  93. *> ignored, SE(2) is the (1,2) and (2,1) element, etc.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] U
  97. *> \verbatim
  98. *> U is DOUBLE PRECISION array, dimension (LDU, N)
  99. *> The unitary matrix in the decomposition.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDU
  103. *> \verbatim
  104. *> LDU is INTEGER
  105. *> The leading dimension of U. LDU must be at least N.
  106. *> \endverbatim
  107. *>
  108. *> \param[out] WORK
  109. *> \verbatim
  110. *> WORK is COMPLEX*16 array, dimension (LDWORK, M+1)
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDWORK
  114. *> \verbatim
  115. *> LDWORK is INTEGER
  116. *> The leading dimension of WORK. LDWORK must be at least
  117. *> max(1,M).
  118. *> \endverbatim
  119. *>
  120. *> \param[out] RWORK
  121. *> \verbatim
  122. *> RWORK is DOUBLE PRECISION array, dimension (N)
  123. *> \endverbatim
  124. *>
  125. *> \param[out] RESULT
  126. *> \verbatim
  127. *> RESULT is DOUBLE PRECISION array, dimension (2)
  128. *> The values computed by the two tests described above. The
  129. *> values are currently limited to 1/ulp, to avoid overflow.
  130. *> \endverbatim
  131. *
  132. * Authors:
  133. * ========
  134. *
  135. *> \author Univ. of Tennessee
  136. *> \author Univ. of California Berkeley
  137. *> \author Univ. of Colorado Denver
  138. *> \author NAG Ltd.
  139. *
  140. *> \ingroup complex16_eig
  141. *
  142. * =====================================================================
  143. SUBROUTINE ZSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
  144. $ LDWORK, RWORK, RESULT )
  145. *
  146. * -- LAPACK test routine --
  147. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  148. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  149. *
  150. * .. Scalar Arguments ..
  151. INTEGER KBAND, LDU, LDWORK, M, N
  152. * ..
  153. * .. Array Arguments ..
  154. DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
  155. $ SD( * ), SE( * )
  156. COMPLEX*16 U( LDU, * ), WORK( LDWORK, * )
  157. * ..
  158. *
  159. * =====================================================================
  160. *
  161. * .. Parameters ..
  162. DOUBLE PRECISION ZERO, ONE
  163. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  164. COMPLEX*16 CZERO, CONE
  165. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  166. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  167. * ..
  168. * .. Local Scalars ..
  169. INTEGER I, J, K
  170. DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
  171. COMPLEX*16 AUKJ
  172. * ..
  173. * .. External Functions ..
  174. DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY
  175. EXTERNAL DLAMCH, ZLANGE, ZLANSY
  176. * ..
  177. * .. External Subroutines ..
  178. EXTERNAL ZGEMM
  179. * ..
  180. * .. Intrinsic Functions ..
  181. INTRINSIC ABS, DBLE, MAX, MIN
  182. * ..
  183. * .. Executable Statements ..
  184. *
  185. RESULT( 1 ) = ZERO
  186. RESULT( 2 ) = ZERO
  187. IF( N.LE.0 .OR. M.LE.0 )
  188. $ RETURN
  189. *
  190. UNFL = DLAMCH( 'Safe minimum' )
  191. ULP = DLAMCH( 'Epsilon' )
  192. *
  193. * Do Test 1
  194. *
  195. * Compute the 1-norm of A.
  196. *
  197. IF( N.GT.1 ) THEN
  198. ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) )
  199. DO 10 J = 2, N - 1
  200. ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+
  201. $ ABS( AE( J-1 ) ) )
  202. 10 CONTINUE
  203. ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) )
  204. ELSE
  205. ANORM = ABS( AD( 1 ) )
  206. END IF
  207. ANORM = MAX( ANORM, UNFL )
  208. *
  209. * Norm of U*AU - S
  210. *
  211. DO 40 I = 1, M
  212. DO 30 J = 1, M
  213. WORK( I, J ) = CZERO
  214. DO 20 K = 1, N
  215. AUKJ = AD( K )*U( K, J )
  216. IF( K.NE.N )
  217. $ AUKJ = AUKJ + AE( K )*U( K+1, J )
  218. IF( K.NE.1 )
  219. $ AUKJ = AUKJ + AE( K-1 )*U( K-1, J )
  220. WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ
  221. 20 CONTINUE
  222. 30 CONTINUE
  223. WORK( I, I ) = WORK( I, I ) - SD( I )
  224. IF( KBAND.EQ.1 ) THEN
  225. IF( I.NE.1 )
  226. $ WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 )
  227. IF( I.NE.N )
  228. $ WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I )
  229. END IF
  230. 40 CONTINUE
  231. *
  232. WNORM = ZLANSY( '1', 'L', M, WORK, M, RWORK )
  233. *
  234. IF( ANORM.GT.WNORM ) THEN
  235. RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
  236. ELSE
  237. IF( ANORM.LT.ONE ) THEN
  238. RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
  239. ELSE
  240. RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
  241. END IF
  242. END IF
  243. *
  244. * Do Test 2
  245. *
  246. * Compute U*U - I
  247. *
  248. CALL ZGEMM( 'T', 'N', M, M, N, CONE, U, LDU, U, LDU, CZERO, WORK,
  249. $ M )
  250. *
  251. DO 50 J = 1, M
  252. WORK( J, J ) = WORK( J, J ) - ONE
  253. 50 CONTINUE
  254. *
  255. RESULT( 2 ) = MIN( DBLE( M ), ZLANGE( '1', M, M, WORK, M,
  256. $ RWORK ) ) / ( M*ULP )
  257. *
  258. RETURN
  259. *
  260. * End of ZSTT22
  261. *
  262. END