You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zget51.f 7.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. *> \brief \b ZGET51
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
  12. * RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER ITYPE, LDA, LDB, LDU, LDV, N
  16. * DOUBLE PRECISION RESULT
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION RWORK( * )
  20. * COMPLEX*16 A( LDA, * ), B( LDB, * ), U( LDU, * ),
  21. * $ V( LDV, * ), WORK( * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> ZGET51 generally checks a decomposition of the form
  31. *>
  32. *> A = U B V**H
  33. *>
  34. *> where **H means conjugate transpose and U and V are unitary.
  35. *>
  36. *> Specifically, if ITYPE=1
  37. *>
  38. *> RESULT = | A - U B V**H | / ( |A| n ulp )
  39. *>
  40. *> If ITYPE=2, then:
  41. *>
  42. *> RESULT = | A - B | / ( |A| n ulp )
  43. *>
  44. *> If ITYPE=3, then:
  45. *>
  46. *> RESULT = | I - U U**H | / ( n ulp )
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> Specifies the type of tests to be performed.
  56. *> =1: RESULT = | A - U B V**H | / ( |A| n ulp )
  57. *> =2: RESULT = | A - B | / ( |A| n ulp )
  58. *> =3: RESULT = | I - U U**H | / ( n ulp )
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The size of the matrix. If it is zero, ZGET51 does nothing.
  65. *> It must be at least zero.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] A
  69. *> \verbatim
  70. *> A is COMPLEX*16 array, dimension (LDA, N)
  71. *> The original (unfactored) matrix.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LDA
  75. *> \verbatim
  76. *> LDA is INTEGER
  77. *> The leading dimension of A. It must be at least 1
  78. *> and at least N.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] B
  82. *> \verbatim
  83. *> B is COMPLEX*16 array, dimension (LDB, N)
  84. *> The factored matrix.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] LDB
  88. *> \verbatim
  89. *> LDB is INTEGER
  90. *> The leading dimension of B. It must be at least 1
  91. *> and at least N.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] U
  95. *> \verbatim
  96. *> U is COMPLEX*16 array, dimension (LDU, N)
  97. *> The unitary matrix on the left-hand side in the
  98. *> decomposition.
  99. *> Not referenced if ITYPE=2
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDU
  103. *> \verbatim
  104. *> LDU is INTEGER
  105. *> The leading dimension of U. LDU must be at least N and
  106. *> at least 1.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] V
  110. *> \verbatim
  111. *> V is COMPLEX*16 array, dimension (LDV, N)
  112. *> The unitary matrix on the left-hand side in the
  113. *> decomposition.
  114. *> Not referenced if ITYPE=2
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LDV
  118. *> \verbatim
  119. *> LDV is INTEGER
  120. *> The leading dimension of V. LDV must be at least N and
  121. *> at least 1.
  122. *> \endverbatim
  123. *>
  124. *> \param[out] WORK
  125. *> \verbatim
  126. *> WORK is COMPLEX*16 array, dimension (2*N**2)
  127. *> \endverbatim
  128. *>
  129. *> \param[out] RWORK
  130. *> \verbatim
  131. *> RWORK is DOUBLE PRECISION array, dimension (N)
  132. *> \endverbatim
  133. *>
  134. *> \param[out] RESULT
  135. *> \verbatim
  136. *> RESULT is DOUBLE PRECISION
  137. *> The values computed by the test specified by ITYPE. The
  138. *> value is currently limited to 1/ulp, to avoid overflow.
  139. *> Errors are flagged by RESULT=10/ulp.
  140. *> \endverbatim
  141. *
  142. * Authors:
  143. * ========
  144. *
  145. *> \author Univ. of Tennessee
  146. *> \author Univ. of California Berkeley
  147. *> \author Univ. of Colorado Denver
  148. *> \author NAG Ltd.
  149. *
  150. *> \ingroup complex16_eig
  151. *
  152. * =====================================================================
  153. SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
  154. $ RWORK, RESULT )
  155. *
  156. * -- LAPACK test routine --
  157. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  158. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  159. *
  160. * .. Scalar Arguments ..
  161. INTEGER ITYPE, LDA, LDB, LDU, LDV, N
  162. DOUBLE PRECISION RESULT
  163. * ..
  164. * .. Array Arguments ..
  165. DOUBLE PRECISION RWORK( * )
  166. COMPLEX*16 A( LDA, * ), B( LDB, * ), U( LDU, * ),
  167. $ V( LDV, * ), WORK( * )
  168. * ..
  169. *
  170. * =====================================================================
  171. *
  172. * .. Parameters ..
  173. DOUBLE PRECISION ZERO, ONE, TEN
  174. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
  175. COMPLEX*16 CZERO, CONE
  176. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  177. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  178. * ..
  179. * .. Local Scalars ..
  180. INTEGER JCOL, JDIAG, JROW
  181. DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
  182. * ..
  183. * .. External Functions ..
  184. DOUBLE PRECISION DLAMCH, ZLANGE
  185. EXTERNAL DLAMCH, ZLANGE
  186. * ..
  187. * .. External Subroutines ..
  188. EXTERNAL ZGEMM, ZLACPY
  189. * ..
  190. * .. Intrinsic Functions ..
  191. INTRINSIC DBLE, MAX, MIN
  192. * ..
  193. * .. Executable Statements ..
  194. *
  195. RESULT = ZERO
  196. IF( N.LE.0 )
  197. $ RETURN
  198. *
  199. * Constants
  200. *
  201. UNFL = DLAMCH( 'Safe minimum' )
  202. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  203. *
  204. * Some Error Checks
  205. *
  206. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  207. RESULT = TEN / ULP
  208. RETURN
  209. END IF
  210. *
  211. IF( ITYPE.LE.2 ) THEN
  212. *
  213. * Tests scaled by the norm(A)
  214. *
  215. ANORM = MAX( ZLANGE( '1', N, N, A, LDA, RWORK ), UNFL )
  216. *
  217. IF( ITYPE.EQ.1 ) THEN
  218. *
  219. * ITYPE=1: Compute W = A - U B V**H
  220. *
  221. CALL ZLACPY( ' ', N, N, A, LDA, WORK, N )
  222. CALL ZGEMM( 'N', 'N', N, N, N, CONE, U, LDU, B, LDB, CZERO,
  223. $ WORK( N**2+1 ), N )
  224. *
  225. CALL ZGEMM( 'N', 'C', N, N, N, -CONE, WORK( N**2+1 ), N, V,
  226. $ LDV, CONE, WORK, N )
  227. *
  228. ELSE
  229. *
  230. * ITYPE=2: Compute W = A - B
  231. *
  232. CALL ZLACPY( ' ', N, N, B, LDB, WORK, N )
  233. *
  234. DO 20 JCOL = 1, N
  235. DO 10 JROW = 1, N
  236. WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
  237. $ - A( JROW, JCOL )
  238. 10 CONTINUE
  239. 20 CONTINUE
  240. END IF
  241. *
  242. * Compute norm(W)/ ( ulp*norm(A) )
  243. *
  244. WNORM = ZLANGE( '1', N, N, WORK, N, RWORK )
  245. *
  246. IF( ANORM.GT.WNORM ) THEN
  247. RESULT = ( WNORM / ANORM ) / ( N*ULP )
  248. ELSE
  249. IF( ANORM.LT.ONE ) THEN
  250. RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
  251. ELSE
  252. RESULT = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
  253. END IF
  254. END IF
  255. *
  256. ELSE
  257. *
  258. * Tests not scaled by norm(A)
  259. *
  260. * ITYPE=3: Compute U U**H - I
  261. *
  262. CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
  263. $ WORK, N )
  264. *
  265. DO 30 JDIAG = 1, N
  266. WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+
  267. $ 1 ) - CONE
  268. 30 CONTINUE
  269. *
  270. RESULT = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
  271. $ DBLE( N ) ) / ( N*ULP )
  272. END IF
  273. *
  274. RETURN
  275. *
  276. * End of ZGET51
  277. *
  278. END